matplotlib.pyplot.hexbin#
- matplotlib.pyplot.hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=<function mean>, mincnt=None, marginals=False, *, data=None, **kwargs)[source]#
Make a 2D hexagonal binning plot of points x, y.
If C is None, the value of the hexagon is determined by the number of points in the hexagon. Otherwise, C specifies values at the coordinate (x[i], y[i]). For each hexagon, these values are reduced using reduce_C_function.
- Parameters:
- x, yarray-like
The data positions. x and y must be of the same length.
- Carray-like, optional
If given, these values are accumulated in the bins. Otherwise, every point has a value of 1. Must be of the same length as x and y.
- gridsizeint or (int, int), default: 100
If a single int, the number of hexagons in the x-direction. The number of hexagons in the y-direction is chosen such that the hexagons are approximately regular.
Alternatively, if a tuple (nx, ny), the number of hexagons in the x-direction and the y-direction. In the y-direction, counting is done along vertically aligned hexagons, not along the zig-zag chains of hexagons; see the following illustration.
(
Source code
,png
)To get approximately regular hexagons, choose \(n_x = \sqrt{3}\,n_y\).
- bins'log' or int or sequence, default: None
Discretization of the hexagon values.
If None, no binning is applied; the color of each hexagon directly corresponds to its count value.
If 'log', use a logarithmic scale for the colormap. Internally, \(log_{10}(i+1)\) is used to determine the hexagon color. This is equivalent to
norm=LogNorm()
.If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of the bins to be used.
- xscale{'linear', 'log'}, default: 'linear'
Use a linear or log10 scale on the horizontal axis.
- yscale{'linear', 'log'}, default: 'linear'
Use a linear or log10 scale on the vertical axis.
- mincntint > 0, default: None
If not None, only display cells with more than mincnt number of points in the cell.
- marginalsbool, default: False
If marginals is True, plot the marginal density as colormapped rectangles along the bottom of the x-axis and left of the y-axis.
- extent4-tuple of float, default: None
The limits of the bins (xmin, xmax, ymin, ymax). The default assigns the limits based on gridsize, x, y, xscale and yscale.
If xscale or yscale is set to 'log', the limits are expected to be the exponent for a power of 10. E.g. for x-limits of 1 and 50 in 'linear' scale and y-limits of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
- Returns:
PolyCollection
A
PolyCollection
defining the hexagonal bins.PolyCollection.get_offsets
contains a Mx2 array containing the x, y positions of the M hexagon centers.PolyCollection.get_array
contains the values of the M hexagons.
If marginals is True, horizontal bar and vertical bar (both PolyCollections) will be attached to the return collection as attributes hbar and vbar.
- Other Parameters:
- cmapstr or
Colormap
, default:rcParams["image.cmap"]
(default:'viridis'
) The Colormap instance or registered colormap name used to map scalar data to colors.
- normstr or
Normalize
, optional The normalization method used to scale scalar data to the [0, 1] range before mapping to colors using cmap. By default, a linear scaling is used, mapping the lowest value to 0 and the highest to 1.
If given, this can be one of the following:
An instance of
Normalize
or one of its subclasses (see Colormap Normalization).A scale name, i.e. one of "linear", "log", "symlog", "logit", etc. For a list of available scales, call
matplotlib.scale.get_scale_names()
. In that case, a suitableNormalize
subclass is dynamically generated and instantiated.
- vmin, vmaxfloat, optional
When using scalar data and no explicit norm, vmin and vmax define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. It is an error to use vmin/vmax when a norm instance is given (but using a
str
norm name together with vmin/vmax is acceptable).- alphafloat between 0 and 1, optional
The alpha blending value, between 0 (transparent) and 1 (opaque).
- linewidthsfloat, default: None
If None, defaults to 1.0.
- edgecolors{'face', 'none', None} or color, default: 'face'
The color of the hexagon edges. Possible values are:
'face': Draw the edges in the same color as the fill color.
'none': No edges are drawn. This can sometimes lead to unsightly unpainted pixels between the hexagons.
None: Draw outlines in the default color.
An explicit color.
- reduce_C_functioncallable, default:
numpy.mean
The function to aggregate C within the bins. It is ignored if C is not given. This must have the signature:
def reduce_C_function(C: array) -> float
Commonly used functions are:
numpy.mean
: average of the pointsnumpy.sum
: integral of the point valuesnumpy.amax
: value taken from the largest point
- dataindexable object, optional
If given, the following parameters also accept a string
s
, which is interpreted asdata[s]
(unless this raises an exception):x, y, C
- **kwargs
PolyCollection
properties All other keyword arguments are passed on to
PolyCollection
:Property
Description
a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
array-like or scalar or None
bool
antialiased
or aa or antialiasedsbool or list of bools
array-like or None
CapStyle
or {'butt', 'projecting', 'round'}(vmin: float, vmax: float)
bool
Patch or (Path, Transform) or None
Colormap
or str or Nonecolor or list of RGBA tuples
edgecolor
or ec or edgecolorscolor or list of colors or 'face'
facecolor
or facecolors or fccolor or list of colors
str
{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
bool
JoinStyle
or {'miter', 'round', 'bevel'}object
linestyle
or dashes or linestyles or lsstr or tuple or list thereof
linewidth
or linewidths or lwfloat or list of floats
bool
Normalize
or str or Noneoffset_transform
or transOffsetunknown
(N, 2) or (2,) array-like
list of array-like
None or bool or float or callable
unknown
bool
sizes
numpy.ndarray
or None(scale: float, length: float, randomness: float)
bool or None
str
list of str or None
list of array-like
unknown
bool
float
- cmapstr or
See also
hist2d
2D histogram rectangular bins