You are reading an old version of the documentation (v2.2.2). For the latest version see https://matplotlib.org/stable/
Version 2.2.2
matplotlib
Fork me on GitHub

Source code for matplotlib.pyplot

# Note: The first part of this file can be modified in place, but the latter
# part is autogenerated by the boilerplate.py script.

"""
`matplotlib.pyplot` is a state-based interface to matplotlib. It provides
a MATLAB-like way of plotting.

pyplot is mainly intended for interactive plots and simple cases of programmatic
plot generation::

    import numpy as np
    import matplotlib.pyplot as plt

    x = np.arange(0, 5, 0.1)
    y = np.sin(x)
    plt.plot(x, y)

The object-oriented API is recommended for more complex plots.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import sys
import time
import warnings

from cycler import cycler
import matplotlib
import matplotlib.colorbar
from matplotlib import style
from matplotlib import _pylab_helpers, interactive
from matplotlib.cbook import dedent, silent_list, is_numlike
from matplotlib.cbook import _string_to_bool
from matplotlib.cbook import deprecated, warn_deprecated
from matplotlib import docstring
from matplotlib.backend_bases import FigureCanvasBase
from matplotlib.figure import Figure, figaspect
from matplotlib.gridspec import GridSpec
from matplotlib.image import imread as _imread
from matplotlib.image import imsave as _imsave
from matplotlib import rcParams, rcParamsDefault, get_backend
from matplotlib import rc_context
from matplotlib.rcsetup import interactive_bk as _interactive_bk
from matplotlib.artist import getp, get, Artist
from matplotlib.artist import setp as _setp
from matplotlib.axes import Axes, Subplot
from matplotlib.projections import PolarAxes
from matplotlib import mlab  # for csv2rec, detrend_none, window_hanning
from matplotlib.scale import get_scale_docs, get_scale_names

from matplotlib import cm
from matplotlib.cm import get_cmap, register_cmap

import numpy as np

# We may not need the following imports here:
from matplotlib.colors import Normalize
from matplotlib.lines import Line2D
from matplotlib.text import Text, Annotation
from matplotlib.patches import Polygon, Rectangle, Circle, Arrow
from matplotlib.widgets import SubplotTool, Button, Slider, Widget

from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\
           FuncFormatter, FormatStrFormatter, ScalarFormatter,\
           LogFormatter, LogFormatterExponent, LogFormatterMathtext,\
           Locator, IndexLocator, FixedLocator, NullLocator,\
           LinearLocator, LogLocator, AutoLocator, MultipleLocator,\
           MaxNLocator
from matplotlib.backends import pylab_setup

## Backend detection ##
def _backend_selection():
    """ If rcParams['backend_fallback'] is true, check to see if the
        current backend is compatible with the current running event
        loop, and if not switches to a compatible one.
    """
    backend = rcParams['backend']
    if not rcParams['backend_fallback'] or backend not in _interactive_bk:
        return
    is_agg_backend = rcParams['backend'].endswith('Agg')
    if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'):
        import wx
        if wx.App.IsMainLoopRunning():
            rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend
    elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg':
        import PyQt4.QtGui
        if not PyQt4.QtGui.qApp.startingUp():
            # The mainloop is running.
            rcParams['backend'] = 'qt4Agg'
    elif 'PyQt5.QtCore' in sys.modules and not backend == 'Qt5Agg':
        import PyQt5.QtWidgets
        if not PyQt5.QtWidgets.qApp.startingUp():
            # The mainloop is running.
            rcParams['backend'] = 'qt5Agg'
    elif ('gtk' in sys.modules and
          backend not in ('GTK', 'GTKAgg', 'GTKCairo')):
        if 'gi' in sys.modules:
            from gi.repository import GObject
            ml = GObject.MainLoop
        else:
            import gobject
            ml = gobject.MainLoop
        if ml().is_running():
            rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend
    elif 'Tkinter' in sys.modules and not backend == 'TkAgg':
        # import Tkinter
        pass  # what if anything do we need to do for tkinter?

_backend_selection()

## Global ##

_backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()

_IP_REGISTERED = None
_INSTALL_FIG_OBSERVER = False


[docs]def install_repl_displayhook(): """ Install a repl display hook so that any stale figure are automatically redrawn when control is returned to the repl. This works with IPython terminals and kernels, as well as vanilla python shells. """ global _IP_REGISTERED global _INSTALL_FIG_OBSERVER class _NotIPython(Exception): pass # see if we have IPython hooks around, if use them try: if 'IPython' in sys.modules: from IPython import get_ipython ip = get_ipython() if ip is None: raise _NotIPython() if _IP_REGISTERED: return def post_execute(): if matplotlib.is_interactive(): draw_all() # IPython >= 2 try: ip.events.register('post_execute', post_execute) except AttributeError: # IPython 1.x ip.register_post_execute(post_execute) _IP_REGISTERED = post_execute _INSTALL_FIG_OBSERVER = False # trigger IPython's eventloop integration, if available from IPython.core.pylabtools import backend2gui ipython_gui_name = backend2gui.get(get_backend()) if ipython_gui_name: ip.enable_gui(ipython_gui_name) else: _INSTALL_FIG_OBSERVER = True # import failed or ipython is not running except (ImportError, _NotIPython): _INSTALL_FIG_OBSERVER = True
[docs]def uninstall_repl_displayhook(): """ Uninstalls the matplotlib display hook. .. warning Need IPython >= 2 for this to work. For IPython < 2 will raise a ``NotImplementedError`` .. warning If you are using vanilla python and have installed another display hook this will reset ``sys.displayhook`` to what ever function was there when matplotlib installed it's displayhook, possibly discarding your changes. """ global _IP_REGISTERED global _INSTALL_FIG_OBSERVER if _IP_REGISTERED: from IPython import get_ipython ip = get_ipython() try: ip.events.unregister('post_execute', _IP_REGISTERED) except AttributeError: raise NotImplementedError("Can not unregister events " "in IPython < 2.0") _IP_REGISTERED = None if _INSTALL_FIG_OBSERVER: _INSTALL_FIG_OBSERVER = False
draw_all = _pylab_helpers.Gcf.draw_all
[docs]@docstring.copy_dedent(Artist.findobj) def findobj(o=None, match=None, include_self=True): if o is None: o = gcf() return o.findobj(match, include_self=include_self)
[docs]def switch_backend(newbackend): """ Switch the default backend. This feature is **experimental**, and is only expected to work switching to an image backend. e.g., if you have a bunch of PostScript scripts that you want to run from an interactive ipython session, you may want to switch to the PS backend before running them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI backend to another, you will explode. Calling this command will close all open windows. """ close('all') global _backend_mod, new_figure_manager, draw_if_interactive, _show matplotlib.use(newbackend, warn=False, force=True) from matplotlib.backends import pylab_setup _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()
[docs]def show(*args, **kw): """ Display a figure. When running in ipython with its pylab mode, display all figures and return to the ipython prompt. In non-interactive mode, display all figures and block until the figures have been closed; in interactive mode it has no effect unless figures were created prior to a change from non-interactive to interactive mode (not recommended). In that case it displays the figures but does not block. A single experimental keyword argument, *block*, may be set to True or False to override the blocking behavior described above. """ global _show return _show(*args, **kw)
[docs]def isinteractive(): """ Return status of interactive mode. """ return matplotlib.is_interactive()
[docs]def ioff(): """Turn interactive mode off.""" matplotlib.interactive(False) uninstall_repl_displayhook()
[docs]def ion(): """Turn interactive mode on.""" matplotlib.interactive(True) install_repl_displayhook()
[docs]def pause(interval): """ Pause for *interval* seconds. If there is an active figure, it will be updated and displayed before the pause, and the GUI event loop (if any) will run during the pause. This can be used for crude animation. For more complex animation, see :mod:`matplotlib.animation`. Notes ----- This function is experimental; its behavior may be changed or extended in a future release. """ manager = _pylab_helpers.Gcf.get_active() if manager is not None: canvas = manager.canvas if canvas.figure.stale: canvas.draw_idle() show(block=False) canvas.start_event_loop(interval) else: time.sleep(interval)
[docs]@docstring.copy_dedent(matplotlib.rc) def rc(*args, **kwargs): matplotlib.rc(*args, **kwargs)
[docs]@docstring.copy_dedent(matplotlib.rc_context) def rc_context(rc=None, fname=None): return matplotlib.rc_context(rc, fname)
[docs]@docstring.copy_dedent(matplotlib.rcdefaults) def rcdefaults(): matplotlib.rcdefaults() if matplotlib.is_interactive(): draw_all()
# The current "image" (ScalarMappable) is retrieved or set # only via the pyplot interface using the following two # functions:
[docs]def gci(): """ Get the current colorable artist. Specifically, returns the current :class:`~matplotlib.cm.ScalarMappable` instance (image or patch collection), or *None* if no images or patch collections have been defined. The commands :func:`~matplotlib.pyplot.imshow` and :func:`~matplotlib.pyplot.figimage` create :class:`~matplotlib.image.Image` instances, and the commands :func:`~matplotlib.pyplot.pcolor` and :func:`~matplotlib.pyplot.scatter` create :class:`~matplotlib.collections.Collection` instances. The current image is an attribute of the current axes, or the nearest earlier axes in the current figure that contains an image. """ return gcf()._gci()
[docs]def sci(im): """ Set the current image. This image will be the target of colormap commands like :func:`~matplotlib.pyplot.jet`, :func:`~matplotlib.pyplot.hot` or :func:`~matplotlib.pyplot.clim`). The current image is an attribute of the current axes. """ gca()._sci(im)
## Any Artist ## # (getp is simply imported)
[docs]@docstring.copy(_setp) def setp(*args, **kwargs): return _setp(*args, **kwargs)
[docs]def xkcd(scale=1, length=100, randomness=2): """ Turns on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode. This will only have effect on things drawn after this function is called. For best results, the "Humor Sans" font should be installed: it is not included with matplotlib. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line. length : float, optional The length of the wiggle along the line. randomness : float, optional The scale factor by which the length is shrunken or expanded. Notes ----- This function works by a number of rcParams, so it will probably override others you have set before. If you want the effects of this function to be temporary, it can be used as a context manager, for example:: with plt.xkcd(): # This figure will be in XKCD-style fig1 = plt.figure() # ... # This figure will be in regular style fig2 = plt.figure() """ if rcParams['text.usetex']: raise RuntimeError( "xkcd mode is not compatible with text.usetex = True") from matplotlib import patheffects xkcd_ctx = rc_context({ 'font.family': ['xkcd', 'Humor Sans', 'Comic Sans MS'], 'font.size': 14.0, 'path.sketch': (scale, length, randomness), 'path.effects': [patheffects.withStroke(linewidth=4, foreground="w")], 'axes.linewidth': 1.5, 'lines.linewidth': 2.0, 'figure.facecolor': 'white', 'grid.linewidth': 0.0, 'axes.grid': False, 'axes.unicode_minus': False, 'axes.edgecolor': 'black', 'xtick.major.size': 8, 'xtick.major.width': 3, 'ytick.major.size': 8, 'ytick.major.width': 3, }) xkcd_ctx.__enter__() # In order to make the call to `xkcd` that does not use a context manager # (cm) work, we need to enter into the cm ourselves, and return a dummy # cm that does nothing on entry and cleans up the xkcd context on exit. # Additionally, we need to keep a reference to the dummy cm because it # would otherwise be exited when GC'd. class dummy_ctx(object): def __enter__(self): pass __exit__ = xkcd_ctx.__exit__ return dummy_ctx()
## Figures ##
[docs]def figure(num=None, # autoincrement if None, else integer from 1-N figsize=None, # defaults to rc figure.figsize dpi=None, # defaults to rc figure.dpi facecolor=None, # defaults to rc figure.facecolor edgecolor=None, # defaults to rc figure.edgecolor frameon=True, FigureClass=Figure, clear=False, **kwargs ): """ Creates a new figure. Parameters ---------- num : integer or string, optional, default: none If not provided, a new figure will be created, and the figure number will be incremented. The figure objects holds this number in a `number` attribute. If num is provided, and a figure with this id already exists, make it active, and returns a reference to it. If this figure does not exists, create it and returns it. If num is a string, the window title will be set to this figure's `num`. figsize : tuple of integers, optional, default: None width, height in inches. If not provided, defaults to rc figure.figsize. dpi : integer, optional, default: None resolution of the figure. If not provided, defaults to rc figure.dpi. facecolor : the background color. If not provided, defaults to rc figure.facecolor. edgecolor : the border color. If not provided, defaults to rc figure.edgecolor. frameon : bool, optional, default: True If False, suppress drawing the figure frame. FigureClass : class derived from matplotlib.figure.Figure Optionally use a custom Figure instance. clear : bool, optional, default: False If True and the figure already exists, then it is cleared. Returns ------- figure : Figure The Figure instance returned will also be passed to new_figure_manager in the backends, which allows to hook custom Figure classes into the pylab interface. Additional kwargs will be passed to the figure init function. Notes ----- If you are creating many figures, make sure you explicitly call "close" on the figures you are not using, because this will enable pylab to properly clean up the memory. rcParams defines the default values, which can be modified in the matplotlibrc file """ if figsize is None: figsize = rcParams['figure.figsize'] if dpi is None: dpi = rcParams['figure.dpi'] if facecolor is None: facecolor = rcParams['figure.facecolor'] if edgecolor is None: edgecolor = rcParams['figure.edgecolor'] allnums = get_fignums() next_num = max(allnums) + 1 if allnums else 1 figLabel = '' if num is None: num = next_num elif isinstance(num, six.string_types): figLabel = num allLabels = get_figlabels() if figLabel not in allLabels: if figLabel == 'all': warnings.warn("close('all') closes all existing figures") num = next_num else: inum = allLabels.index(figLabel) num = allnums[inum] else: num = int(num) # crude validation of num argument figManager = _pylab_helpers.Gcf.get_fig_manager(num) if figManager is None: max_open_warning = rcParams['figure.max_open_warning'] if (max_open_warning >= 1 and len(allnums) >= max_open_warning): warnings.warn( "More than %d figures have been opened. Figures " "created through the pyplot interface " "(`matplotlib.pyplot.figure`) are retained until " "explicitly closed and may consume too much memory. " "(To control this warning, see the rcParam " "`figure.max_open_warning`)." % max_open_warning, RuntimeWarning) if get_backend().lower() == 'ps': dpi = 72 figManager = new_figure_manager(num, figsize=figsize, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, frameon=frameon, FigureClass=FigureClass, **kwargs) if figLabel: figManager.set_window_title(figLabel) figManager.canvas.figure.set_label(figLabel) # make this figure current on button press event def make_active(event): _pylab_helpers.Gcf.set_active(figManager) cid = figManager.canvas.mpl_connect('button_press_event', make_active) figManager._cidgcf = cid _pylab_helpers.Gcf.set_active(figManager) fig = figManager.canvas.figure fig.number = num # make sure backends (inline) that we don't ship that expect this # to be called in plotting commands to make the figure call show # still work. There is probably a better way to do this in the # FigureManager base class. if matplotlib.is_interactive(): draw_if_interactive() if _INSTALL_FIG_OBSERVER: fig.stale_callback = _auto_draw_if_interactive if clear: figManager.canvas.figure.clear() return figManager.canvas.figure
def _auto_draw_if_interactive(fig, val): """ This is an internal helper function for making sure that auto-redrawing works as intended in the plain python repl. Parameters ---------- fig : Figure A figure object which is assumed to be associated with a canvas """ if val and matplotlib.is_interactive() and not fig.canvas.is_saving(): fig.canvas.draw_idle()
[docs]def gcf(): """Get a reference to the current figure.""" figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: return figManager.canvas.figure else: return figure()
[docs]def fignum_exists(num): return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels()
[docs]def get_fignums(): """Return a list of existing figure numbers.""" return sorted(_pylab_helpers.Gcf.figs)
[docs]def get_figlabels(): """Return a list of existing figure labels.""" figManagers = _pylab_helpers.Gcf.get_all_fig_managers() figManagers.sort(key=lambda m: m.num) return [m.canvas.figure.get_label() for m in figManagers]
[docs]def get_current_fig_manager(): figManager = _pylab_helpers.Gcf.get_active() if figManager is None: gcf() # creates an active figure as a side effect figManager = _pylab_helpers.Gcf.get_active() return figManager
[docs]@docstring.copy_dedent(FigureCanvasBase.mpl_connect) def connect(s, func): return get_current_fig_manager().canvas.mpl_connect(s, func)
[docs]@docstring.copy_dedent(FigureCanvasBase.mpl_disconnect) def disconnect(cid): return get_current_fig_manager().canvas.mpl_disconnect(cid)
[docs]def close(*args): """ Close a figure window. ``close()`` by itself closes the current figure ``close(fig)`` closes the `.Figure` instance *fig* ``close(num)`` closes the figure number *num* ``close(name)`` where *name* is a string, closes figure with that label ``close('all')`` closes all the figure windows """ if len(args) == 0: figManager = _pylab_helpers.Gcf.get_active() if figManager is None: return else: _pylab_helpers.Gcf.destroy(figManager.num) elif len(args) == 1: arg = args[0] if arg == 'all': _pylab_helpers.Gcf.destroy_all() elif isinstance(arg, six.integer_types): _pylab_helpers.Gcf.destroy(arg) elif hasattr(arg, 'int'): # if we are dealing with a type UUID, we # can use its integer representation _pylab_helpers.Gcf.destroy(arg.int) elif isinstance(arg, six.string_types): allLabels = get_figlabels() if arg in allLabels: num = get_fignums()[allLabels.index(arg)] _pylab_helpers.Gcf.destroy(num) elif isinstance(arg, Figure): _pylab_helpers.Gcf.destroy_fig(arg) else: raise TypeError('Unrecognized argument type %s to close' % type(arg)) else: raise TypeError('close takes 0 or 1 arguments')
[docs]def clf(): """ Clear the current figure. """ gcf().clf()
[docs]def draw(): """Redraw the current figure. This is used to update a figure that has been altered, but not automatically re-drawn. If interactive mode is on (:func:`.ion()`), this should be only rarely needed, but there may be ways to modify the state of a figure without marking it as `stale`. Please report these cases as bugs. A more object-oriented alternative, given any :class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that was created using a :mod:`~matplotlib.pyplot` function, is:: fig.canvas.draw_idle() """ get_current_fig_manager().canvas.draw_idle()
[docs]@docstring.copy_dedent(Figure.savefig) def savefig(*args, **kwargs): fig = gcf() res = fig.savefig(*args, **kwargs) fig.canvas.draw_idle() # need this if 'transparent=True' to reset colors return res
[docs]@docstring.copy_dedent(Figure.ginput) def ginput(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* clicks from the user and return a list of the coordinates of each click. If *timeout* is negative, does not timeout. """ return gcf().ginput(*args, **kwargs)
[docs]@docstring.copy_dedent(Figure.waitforbuttonpress) def waitforbuttonpress(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* key or mouse clicks from the user and return a list containing True's for keyboard clicks and False's for mouse clicks. If *timeout* is negative, does not timeout. """ return gcf().waitforbuttonpress(*args, **kwargs)
# Putting things in figures
[docs]@docstring.copy_dedent(Figure.text) def figtext(*args, **kwargs): return gcf().text(*args, **kwargs)
[docs]@docstring.copy_dedent(Figure.suptitle) def suptitle(*args, **kwargs): return gcf().suptitle(*args, **kwargs)
[docs]@docstring.copy_dedent(Figure.figimage) def figimage(*args, **kwargs): return gcf().figimage(*args, **kwargs)
[docs]def figlegend(*args, **kwargs): """ Place a legend in the figure. *labels* a sequence of strings *handles* a sequence of :class:`~matplotlib.lines.Line2D` or :class:`~matplotlib.patches.Patch` instances *loc* can be a string or an integer specifying the legend location A :class:`matplotlib.legend.Legend` instance is returned. Examples -------- To make a legend from existing artists on every axes:: figlegend() To make a legend for a list of lines and labels:: figlegend( (line1, line2, line3), ('label1', 'label2', 'label3'), 'upper right' ) .. seealso:: :func:`~matplotlib.pyplot.legend` """ return gcf().legend(*args, **kwargs)
## Figure and Axes hybrid ## _hold_msg = """pyplot.hold is deprecated. Future behavior will be consistent with the long-time default: plot commands add elements without first clearing the Axes and/or Figure."""
[docs]@deprecated("2.0", message=_hold_msg) def hold(b=None): """ Set the hold state. If *b* is None (default), toggle the hold state, else set the hold state to boolean value *b*:: hold() # toggle hold hold(True) # hold is on hold(False) # hold is off When *hold* is *True*, subsequent plot commands will add elements to the current axes. When *hold* is *False*, the current axes and figure will be cleared on the next plot command. """ fig = gcf() ax = fig.gca() if b is not None: b = bool(b) fig._hold = b ax._hold = b # b=None toggles the hold state, so let's get get the current hold # state; but should pyplot hold toggle the rc setting - me thinks # not b = ax._hold # The comment above looks ancient; and probably the line below, # contrary to the comment, is equally ancient. It will trigger # a second warning, but "Oh, well...". rc('axes', hold=b)
[docs]@deprecated("2.0", message=_hold_msg) def ishold(): """ Return the hold status of the current axes. """ return gca()._hold
[docs]@deprecated("2.0", message=_hold_msg) def over(func, *args, **kwargs): """ Call a function with hold(True). Calls:: func(*args, **kwargs) with ``hold(True)`` and then restores the hold state. """ ax = gca() h = ax._hold ax._hold = True func(*args, **kwargs) ax._hold = h
## Axes ##
[docs]def axes(arg=None, **kwargs): """ Add an axes to the current figure and make it the current axes. Parameters ---------- arg : None or 4-tuple or Axes The exact behavior of this function depends on the type: - *None*: A new full window axes is added using ``subplot(111, **kwargs)`` - 4-tuple of floats *rect* = ``[left, bottom, width, height]``. A new axes is added with dimensions *rect* in normalized (0, 1) units using `~.Figure.add_axes` on the current figure. - `.Axes`: This is equivalent to `.pyplot.sca`. It sets the current axes to *arg*. Note: This implicitly changes the current figure to the parent of *arg*. .. note:: The use of an Axes as an argument is deprecated and will be removed in v3.0. Please use `.pyplot.sca` instead. Other Parameters ---------------- **kwargs : For allowed keyword arguments see `.pyplot.subplot` and `.Figure.add_axes` respectively. Some common keyword arguments are listed below: ========= =========== ================================================= kwarg Accepts Description ========= =========== ================================================= facecolor color the axes background color frameon bool whether to display the frame sharex otherax share x-axis with *otherax* sharey otherax share y-axis with *otherax* polar bool whether to use polar axes aspect [str | num] ['equal', 'auto'] or a number. If a number, the ratio of y-unit/x-unit in screen-space. See also `~.Axes.set_aspect`. ========= =========== ================================================= Returns ------- axes : Axes The created or activated axes. Examples -------- Creating a new full window axes:: >>> plt.axes() Creating a new axes with specified dimensions and some kwargs:: >>> plt.axes((left, bottom, width, height), facecolor='w') """ if arg is None: return subplot(111, **kwargs) if isinstance(arg, Axes): warn_deprecated("2.2", message="Using pyplot.axes(ax) with ax an Axes " "argument is deprecated. Please use " "pyplot.sca(ax) instead.") ax = arg sca(ax) return ax else: rect = arg return gcf().add_axes(rect, **kwargs)
[docs]def delaxes(ax=None): """ Remove the given `Axes` *ax* from the current figure. If *ax* is *None*, the current axes is removed. A KeyError is raised if the axes doesn't exist. """ if ax is None: ax = gca() gcf().delaxes(ax)
[docs]def sca(ax): """ Set the current Axes instance to *ax*. The current Figure is updated to the parent of *ax*. """ managers = _pylab_helpers.Gcf.get_all_fig_managers() for m in managers: if ax in m.canvas.figure.axes: _pylab_helpers.Gcf.set_active(m) m.canvas.figure.sca(ax) return raise ValueError("Axes instance argument was not found in a figure.")
[docs]def gca(**kwargs): """ Get the current :class:`~matplotlib.axes.Axes` instance on the current figure matching the given keyword args, or create one. Examples -------- To get the current polar axes on the current figure:: plt.gca(projection='polar') If the current axes doesn't exist, or isn't a polar one, the appropriate axes will be created and then returned. See Also -------- matplotlib.figure.Figure.gca : The figure's gca method. """ return gcf().gca(**kwargs)
# More ways of creating axes:
[docs]def subplot(*args, **kwargs): """ Return a subplot axes at the given grid position. Call signature:: subplot(nrows, ncols, index, **kwargs) In the current figure, create and return an `.Axes`, at position *index* of a (virtual) grid of *nrows* by *ncols* axes. Indexes go from 1 to ``nrows * ncols``, incrementing in row-major order. If *nrows*, *ncols* and *index* are all less than 10, they can also be given as a single, concatenated, three-digit number. For example, ``subplot(2, 3, 3)`` and ``subplot(233)`` both create an `.Axes` at the top right corner of the current figure, occupying half of the figure height and a third of the figure width. .. note:: Creating a subplot will delete any pre-existing subplot that overlaps with it beyond sharing a boundary:: import matplotlib.pyplot as plt # plot a line, implicitly creating a subplot(111) plt.plot([1,2,3]) # now create a subplot which represents the top plot of a grid # with 2 rows and 1 column. Since this subplot will overlap the # first, the plot (and its axes) previously created, will be removed plt.subplot(211) plt.plot(range(12)) plt.subplot(212, facecolor='y') # creates 2nd subplot with yellow background If you do not want this behavior, use the :meth:`~matplotlib.figure.Figure.add_subplot` method or the :func:`~matplotlib.pyplot.axes` function instead. Keyword arguments: *facecolor*: The background color of the subplot, which can be any valid color specifier. See :mod:`matplotlib.colors` for more information. *polar*: A boolean flag indicating whether the subplot plot should be a polar projection. Defaults to *False*. *projection*: A string giving the name of a custom projection to be used for the subplot. This projection must have been previously registered. See :mod:`matplotlib.projections`. .. seealso:: :func:`~matplotlib.pyplot.axes` For additional information on :func:`axes` and :func:`subplot` keyword arguments. :file:`gallery/pie_and_polar_charts/polar_scatter.py` For an example **Example:** .. plot:: gallery/subplots_axes_and_figures/subplot.py """ # if subplot called without arguments, create subplot(1,1,1) if len(args)==0: args=(1,1,1) # This check was added because it is very easy to type # subplot(1, 2, False) when subplots(1, 2, False) was intended # (sharex=False, that is). In most cases, no error will # ever occur, but mysterious behavior can result because what was # intended to be the sharex argument is instead treated as a # subplot index for subplot() if len(args) >= 3 and isinstance(args[2], bool) : warnings.warn("The subplot index argument to subplot() appears" " to be a boolean. Did you intend to use subplots()?") fig = gcf() a = fig.add_subplot(*args, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) return a
[docs]def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw): """ Create a figure and a set of subplots This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Parameters ---------- nrows, ncols : int, optional, default: 1 Number of rows/columns of the subplot grid. sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False Controls sharing of properties among x (`sharex`) or y (`sharey`) axes: - True or 'all': x- or y-axis will be shared among all subplots. - False or 'none': each subplot x- or y-axis will be independent. - 'row': each subplot row will share an x- or y-axis. - 'col': each subplot column will share an x- or y-axis. When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are visible. Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are visible. squeeze : bool, optional, default: True - If True, extra dimensions are squeezed out from the returned Axes object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1D numpy object array of Axes objects are returned as numpy 1D arrays. - for NxM, subplots with N>1 and M>1 are returned as a 2D arrays. - If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1. subplot_kw : dict, optional Dict with keywords passed to the :meth:`~matplotlib.figure.Figure.add_subplot` call used to create each subplot. gridspec_kw : dict, optional Dict with keywords passed to the :class:`~matplotlib.gridspec.GridSpec` constructor used to create the grid the subplots are placed on. **fig_kw : All additional keyword arguments are passed to the :func:`figure` call. Returns ------- fig : :class:`matplotlib.figure.Figure` object ax : Axes object or array of Axes objects. ax can be either a single :class:`matplotlib.axes.Axes` object or an array of Axes objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Examples -------- First create some toy data: >>> x = np.linspace(0, 2*np.pi, 400) >>> y = np.sin(x**2) Creates just a figure and only one subplot >>> fig, ax = plt.subplots() >>> ax.plot(x, y) >>> ax.set_title('Simple plot') Creates two subplots and unpacks the output array immediately >>> f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) >>> ax1.plot(x, y) >>> ax1.set_title('Sharing Y axis') >>> ax2.scatter(x, y) Creates four polar axes, and accesses them through the returned array >>> fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True)) >>> axes[0, 0].plot(x, y) >>> axes[1, 1].scatter(x, y) Share a X axis with each column of subplots >>> plt.subplots(2, 2, sharex='col') Share a Y axis with each row of subplots >>> plt.subplots(2, 2, sharey='row') Share both X and Y axes with all subplots >>> plt.subplots(2, 2, sharex='all', sharey='all') Note that this is the same as >>> plt.subplots(2, 2, sharex=True, sharey=True) See Also -------- figure subplot """ fig = figure(**fig_kw) axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, squeeze=squeeze, subplot_kw=subplot_kw, gridspec_kw=gridspec_kw) return fig, axs
[docs]def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs): """ Create an axis at specific location inside a regular grid. Parameters ---------- shape : sequence of 2 ints Shape of grid in which to place axis. First entry is number of rows, second entry is number of columns. loc : sequence of 2 ints Location to place axis within grid. First entry is row number, second entry is column number. rowspan : int Number of rows for the axis to span to the right. colspan : int Number of columns for the axis to span downwards. fig : `Figure`, optional Figure to place axis in. Defaults to current figure. **kwargs Additional keyword arguments are handed to `add_subplot`. Notes ----- The following call :: subplot2grid(shape, loc, rowspan=1, colspan=1) is identical to :: gridspec=GridSpec(shape[0], shape[1]) subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan) subplot(subplotspec) """ if fig is None: fig = gcf() s1, s2 = shape subplotspec = GridSpec(s1, s2).new_subplotspec(loc, rowspan=rowspan, colspan=colspan) a = fig.add_subplot(subplotspec, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other == a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) return a
[docs]def twinx(ax=None): """ Make a second axes that shares the *x*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*). The ticks for *ax2* will be placed on the right, and the *ax2* instance is returned. .. seealso:: :file:`examples/api_examples/two_scales.py` For an example """ if ax is None: ax=gca() ax1 = ax.twinx() return ax1
[docs]def twiny(ax=None): """ Make a second axes that shares the *y*-axis. The new axis will overlay *ax* (or the current axes if *ax* is *None*). The ticks for *ax2* will be placed on the top, and the *ax2* instance is returned. """ if ax is None: ax=gca() ax1 = ax.twiny() return ax1
[docs]def subplots_adjust(*args, **kwargs): """ Tune the subplot layout. call signature:: subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) The parameter meanings (and suggested defaults) are:: left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for space between subplots, # expressed as a fraction of the average axis width hspace = 0.2 # the amount of height reserved for space between subplots, # expressed as a fraction of the average axis height The actual defaults are controlled by the rc file """ fig = gcf() fig.subplots_adjust(*args, **kwargs)
[docs]def subplot_tool(targetfig=None): """ Launch a subplot tool window for a figure. A :class:`matplotlib.widgets.SubplotTool` instance is returned. """ tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig rcParams['toolbar'] = 'None' if targetfig is None: manager = get_current_fig_manager() targetfig = manager.canvas.figure else: # find the manager for this figure for manager in _pylab_helpers.Gcf._activeQue: if manager.canvas.figure==targetfig: break else: raise RuntimeError('Could not find manager for targetfig') toolfig = figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) ret = SubplotTool(targetfig, toolfig) rcParams['toolbar'] = tbar _pylab_helpers.Gcf.set_active(manager) # restore the current figure return ret
[docs]def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None): """ Automatically adjust subplot parameters to give specified padding. Parameters ---------- pad : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. rect : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ fig = gcf() fig.tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)
[docs]def box(on=None): """ Turn the axes box on or off. Parameters ---------- on : bool or None The new axes box state. If ``None``, toggle the state. """ ax = gca() on = _string_to_bool(on) if on is None: on = not ax.get_frame_on() ax.set_frame_on(on)
[docs]def title(s, *args, **kwargs): """ Set a title of the current axes. Set one of the three available axes titles. The available titles are positioned above the axes in the center, flush with the left edge, and flush with the right edge. .. seealso:: See :func:`~matplotlib.pyplot.text` for adding text to the current axes Parameters ---------- label : str Text to use for the title fontdict : dict A dictionary controlling the appearance of the title text, the default `fontdict` is: {'fontsize': rcParams['axes.titlesize'], 'fontweight' : rcParams['axes.titleweight'], 'verticalalignment': 'baseline', 'horizontalalignment': loc} loc : {'center', 'left', 'right'}, str, optional Which title to set, defaults to 'center' Returns ------- text : :class:`~matplotlib.text.Text` The matplotlib text instance representing the title Other parameters ---------------- kwargs : text properties Other keyword arguments are text properties, see :class:`~matplotlib.text.Text` for a list of valid text properties. """ return gca().set_title(s, *args, **kwargs)
## Axis ##
[docs]def axis(*v, **kwargs): """ Convenience method to get or set axis properties. Calling with no arguments:: >>> axis() returns the current axes limits ``[xmin, xmax, ymin, ymax]``.:: >>> axis(v) sets the min and max of the x and y axes, with ``v = [xmin, xmax, ymin, ymax]``.:: >>> axis('off') turns off the axis lines and labels.:: >>> axis('equal') changes limits of *x* or *y* axis so that equal increments of *x* and *y* have the same length; a circle is circular.:: >>> axis('scaled') achieves the same result by changing the dimensions of the plot box instead of the axis data limits.:: >>> axis('tight') changes *x* and *y* axis limits such that all data is shown. If all data is already shown, it will move it to the center of the figure without modifying (*xmax* - *xmin*) or (*ymax* - *ymin*). Note this is slightly different than in MATLAB.:: >>> axis('image') is 'scaled' with the axis limits equal to the data limits.:: >>> axis('auto') and:: >>> axis('normal') are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit comfortably within the plot box. if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax* as kwargs selectively to alter just those limits without changing the others. >>> axis('square') changes the limit ranges (*xmax*-*xmin*) and (*ymax*-*ymin*) of the *x* and *y* axes to be the same, and have the same scaling, resulting in a square plot. The xmin, xmax, ymin, ymax tuple is returned .. seealso:: :func:`xlim`, :func:`ylim` For setting the x- and y-limits individually. """ return gca().axis(*v, **kwargs)
[docs]def xlabel(s, *args, **kwargs): """ Set the x-axis label of the current axes. Call signature:: xlabel(label, fontdict=None, labelpad=None, **kwargs) This is the pyplot equivalent of calling `.set_xlabel` on the current axes. See there for a full parameter description. """ return gca().set_xlabel(s, *args, **kwargs)
[docs]def ylabel(s, *args, **kwargs): """ Set the y-axis label of the current axes. Call signature:: ylabel(label, fontdict=None, labelpad=None, **kwargs) This is the pyplot equivalent of calling `.set_ylabel` on the current axes. See there for a full parameter description. """ return gca().set_ylabel(s, *args, **kwargs)
[docs]def xlim(*args, **kwargs): """ Get or set the x limits of the current axes. Call signatures:: xmin, xmax = xlim() # return the current xlim xlim((xmin, xmax)) # set the xlim to xmin, xmax xlim(xmin, xmax) # set the xlim to xmin, xmax If you do not specify args, you can pass *xmin* or *xmax* as kwargs, i.e.:: xlim(xmax=3) # adjust the max leaving min unchanged xlim(xmin=1) # adjust the min leaving max unchanged Setting limits turns autoscaling off for the x-axis. Returns ------- xmin, xmax A tuple of the new x-axis limits. Notes ----- Calling this function with no arguments (e.g. ``xlim()``) is the pyplot equivalent of calling `~.Axes.get_xlim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xlim` on the current axes. All arguments are passed though. """ ax = gca() if not args and not kwargs: return ax.get_xlim() ret = ax.set_xlim(*args, **kwargs) return ret
[docs]def ylim(*args, **kwargs): """ Get or set the y-limits of the current axes. Call signatures:: ymin, ymax = ylim() # return the current ylim ylim((ymin, ymax)) # set the ylim to ymin, ymax ylim(ymin, ymax) # set the ylim to ymin, ymax If you do not specify args, you can alternatively pass *ymin* or *ymax* as kwargs, i.e.:: ylim(ymax=3) # adjust the max leaving min unchanged ylim(ymin=1) # adjust the min leaving max unchanged Setting limits turns autoscaling off for the y-axis. Returns ------- ymin, ymax A tuple of the new y-axis limits. Notes ----- Calling this function with no arguments (e.g. ``ylim()``) is the pyplot equivalent of calling `~.Axes.get_ylim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_ylim` on the current axes. All arguments are passed though. """ ax = gca() if not args and not kwargs: return ax.get_ylim() ret = ax.set_ylim(*args, **kwargs) return ret
[docs]@docstring.dedent_interpd def xscale(*args, **kwargs): """ Set the scaling of the x-axis. Call signature:: xscale(scale, **kwargs) Parameters ---------- scale : [%(scale)s] The scaling type. **kwargs Additional parameters depend on *scale*. See Notes. Notes ----- This is the pyplot equivalent of calling `~.Axes.set_xscale` on the current axes. Different keywords may be accepted, depending on the scale: %(scale_docs)s """ gca().set_xscale(*args, **kwargs)
[docs]@docstring.dedent_interpd def yscale(*args, **kwargs): """ Set the scaling of the y-axis. Call signature:: yscale(scale, **kwargs) Parameters ---------- scale : [%(scale)s] The scaling type. **kwargs Additional parameters depend on *scale*. See Notes. Notes ----- This is the pyplot equivalent of calling `~.Axes.set_yscale` on the current axes. Different keywords may be accepted, depending on the scale: %(scale_docs)s """ gca().set_yscale(*args, **kwargs)
[docs]def xticks(*args, **kwargs): """ Get or set the current tick locations and labels of the x-axis. Call signatures:: locs, labels = xticks() # Get locations and labels xticks(locs, [labels], **kwargs) # Set locations and labels Parameters ---------- locs : array_like A list of positions at which ticks should be placed. You can pass an empty list to disable xticks. labels : array_like, optional A list of explicit labels to place at the given *locs*. **kwargs :class:`.Text` properties can be used to control the appearance of the labels. Returns ------- locs An array of label locations. labels A list of `.Text` objects. Notes ----- Calling this function with no arguments (e.g. ``xticks()``) is the pyplot equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes. Examples -------- Get the current locations and labels: >>> locs, labels = xticks() Set label locations: >>> xticks(np.arange(0, 1, step=0.2)) Set text labels: >>> xticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) Set text labels and properties: >>> xticks(np.arange(12), calendar.month_name[1:13], rotation=20) Disable xticks: >>> xticks([]) """ ax = gca() if len(args)==0: locs = ax.get_xticks() labels = ax.get_xticklabels() elif len(args)==1: locs = ax.set_xticks(args[0]) labels = ax.get_xticklabels() elif len(args)==2: locs = ax.set_xticks(args[0]) labels = ax.set_xticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to xticks') if len(kwargs): for l in labels: l.update(kwargs) return locs, silent_list('Text xticklabel', labels)
[docs]def yticks(*args, **kwargs): """ Get or set the current tick locations and labels of the y-axis. Call signatures:: locs, labels = yticks() # Get locations and labels yticks(locs, [labels], **kwargs) # Set locations and labels Parameters ---------- locs : array_like A list of positions at which ticks should be placed. You can pass an empty list to disable yticks. labels : array_like, optional A list of explicit labels to place at the given *locs*. **kwargs :class:`.Text` properties can be used to control the appearance of the labels. Returns ------- locs An array of label locations. labels A list of `.Text` objects. Notes ----- Calling this function with no arguments (e.g. ``yticks()``) is the pyplot equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes. Examples -------- Get the current locations and labels: >>> locs, labels = yticks() Set label locations: >>> yticks(np.arange(0, 1, step=0.2)) Set text labels: >>> yticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) Set text labels and properties: >>> yticks(np.arange(12), calendar.month_name[1:13], rotation=45) Disable yticks: >>> yticks([]) """ ax = gca() if len(args)==0: locs = ax.get_yticks() labels = ax.get_yticklabels() elif len(args)==1: locs = ax.set_yticks(args[0]) labels = ax.get_yticklabels() elif len(args)==2: locs = ax.set_yticks(args[0]) labels = ax.set_yticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to yticks') if len(kwargs): for l in labels: l.update(kwargs) return ( locs, silent_list('Text yticklabel', labels) )
[docs]def minorticks_on(): """ Display minor ticks on the current plot. Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is a problem. """ gca().minorticks_on()
[docs]def minorticks_off(): """ Remove minor ticks from the current plot. """ gca().minorticks_off()
[docs]def rgrids(*args, **kwargs): """ Get or set the radial gridlines on a polar plot. call signatures:: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs) When called with no arguments, :func:`rgrid` simply returns the tuple (*lines*, *labels*), where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances). When called with arguments, the labels will appear at the specified radial distances and angles. *labels*, if not *None*, is a len(*radii*) list of strings of the labels to use at each angle. If *labels* is None, the rformatter will be used Examples:: # set the locations of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.yaxis.get_gridlines() labels = ax.yaxis.get_ticklabels() else: lines, labels = ax.set_rgrids(*args, **kwargs) return ( silent_list('Line2D rgridline', lines), silent_list('Text rgridlabel', labels) )
[docs]def thetagrids(*args, **kwargs): """ Get or set the theta locations of the gridlines in a polar plot. If no arguments are passed, return a tuple (*lines*, *labels*) where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances):: lines, labels = thetagrids() Otherwise the syntax is:: lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1) set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not *None*, is a len(angles) list of strings of the labels to use at each angle. If *labels* is *None*, the labels will be ``fmt%angle``. *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). e.g., 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*lines*, *labels*): - *lines* are :class:`~matplotlib.lines.Line2D` instances - *labels* are :class:`~matplotlib.text.Text` instances. Note that on input, the *labels* argument is a list of strings, and on output it is a list of :class:`~matplotlib.text.Text` instances. Examples:: # set the locations of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90) ) # set the locations and labels of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.xaxis.get_ticklines() labels = ax.xaxis.get_ticklabels() else: lines, labels = ax.set_thetagrids(*args, **kwargs) return (silent_list('Line2D thetagridline', lines), silent_list('Text thetagridlabel', labels) )
## Plotting Info ##
[docs]def plotting(): pass
[docs]def get_plot_commands(): """ Get a sorted list of all of the plotting commands. """ # This works by searching for all functions in this module and # removing a few hard-coded exclusions, as well as all of the # colormap-setting functions, and anything marked as private with # a preceding underscore. import inspect exclude = {'colormaps', 'colors', 'connect', 'disconnect', 'get_plot_commands', 'get_current_fig_manager', 'ginput', 'plotting', 'waitforbuttonpress'} exclude |= set(colormaps()) this_module = inspect.getmodule(get_plot_commands) commands = set() for name, obj in list(six.iteritems(globals())): if name.startswith('_') or name in exclude: continue if inspect.isfunction(obj) and inspect.getmodule(obj) is this_module: commands.add(name) return sorted(commands)
[docs]@deprecated('2.1') def colors(): """ This is a do-nothing function to provide you with help on how matplotlib handles colors. Commands which take color arguments can use several formats to specify the colors. For the basic built-in colors, you can use a single letter ===== ======= Alias Color ===== ======= 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ===== ======= For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1]. You can also use any legal html name for a color, for example:: color = 'red' color = 'burlywood' color = 'chartreuse' The example below creates a subplot with a dark slate gray background:: subplot(111, facecolor=(0.1843, 0.3098, 0.3098)) Here is an example that creates a pale turquoise title:: title('Is this the best color?', color='#afeeee') """ pass
[docs]def colormaps(): """ Matplotlib provides a number of colormaps, and others can be added using :func:`~matplotlib.cm.register_cmap`. This function documents the built-in colormaps, and will also return a list of all registered colormaps if called. You can set the colormap for an image, pcolor, scatter, etc, using a keyword argument:: imshow(X, cmap=cm.hot) or using the :func:`set_cmap` function:: imshow(X) pyplot.set_cmap('hot') pyplot.set_cmap('jet') In interactive mode, :func:`set_cmap` will update the colormap post-hoc, allowing you to see which one works best for your data. All built-in colormaps can be reversed by appending ``_r``: For instance, ``gray_r`` is the reverse of ``gray``. There are several common color schemes used in visualization: Sequential schemes for unipolar data that progresses from low to high Diverging schemes for bipolar data that emphasizes positive or negative deviations from a central value Cyclic schemes meant for plotting values that wrap around at the endpoints, such as phase angle, wind direction, or time of day Qualitative schemes for nominal data that has no inherent ordering, where color is used only to distinguish categories Matplotlib ships with 4 perceptually uniform color maps which are the recommended color maps for sequential data: ========= =================================================== Colormap Description ========= =================================================== inferno perceptually uniform shades of black-red-yellow magma perceptually uniform shades of black-red-white plasma perceptually uniform shades of blue-red-yellow viridis perceptually uniform shades of blue-green-yellow ========= =================================================== The following colormaps are based on the `ColorBrewer <http://colorbrewer2.org>`_ color specifications and designs developed by Cynthia Brewer: ColorBrewer Diverging (luminance is highest at the midpoint, and decreases towards differently-colored endpoints): ======== =================================== Colormap Description ======== =================================== BrBG brown, white, blue-green PiYG pink, white, yellow-green PRGn purple, white, green PuOr orange, white, purple RdBu red, white, blue RdGy red, white, gray RdYlBu red, yellow, blue RdYlGn red, yellow, green Spectral red, orange, yellow, green, blue ======== =================================== ColorBrewer Sequential (luminance decreases monotonically): ======== ==================================== Colormap Description ======== ==================================== Blues white to dark blue BuGn white, light blue, dark green BuPu white, light blue, dark purple GnBu white, light green, dark blue Greens white to dark green Greys white to black (not linear) Oranges white, orange, dark brown OrRd white, orange, dark red PuBu white, light purple, dark blue PuBuGn white, light purple, dark green PuRd white, light purple, dark red Purples white to dark purple RdPu white, pink, dark purple Reds white to dark red YlGn light yellow, dark green YlGnBu light yellow, light green, dark blue YlOrBr light yellow, orange, dark brown YlOrRd light yellow, orange, dark red ======== ==================================== ColorBrewer Qualitative: (For plotting nominal data, :class:`ListedColormap` is used, not :class:`LinearSegmentedColormap`. Different sets of colors are recommended for different numbers of categories.) * Accent * Dark2 * Paired * Pastel1 * Pastel2 * Set1 * Set2 * Set3 A set of colormaps derived from those of the same name provided with Matlab are also included: ========= ======================================================= Colormap Description ========= ======================================================= autumn sequential linearly-increasing shades of red-orange-yellow bone sequential increasing black-white color map with a tinge of blue, to emulate X-ray film cool linearly-decreasing shades of cyan-magenta copper sequential increasing shades of black-copper flag repetitive red-white-blue-black pattern (not cyclic at endpoints) gray sequential linearly-increasing black-to-white grayscale hot sequential black-red-yellow-white, to emulate blackbody radiation from an object at increasing temperatures hsv cyclic red-yellow-green-cyan-blue-magenta-red, formed by changing the hue component in the HSV color space jet a spectral map with dark endpoints, blue-cyan-yellow-red; based on a fluid-jet simulation by NCSA [#]_ pink sequential increasing pastel black-pink-white, meant for sepia tone colorization of photographs prism repetitive red-yellow-green-blue-purple-...-green pattern (not cyclic at endpoints) spring linearly-increasing shades of magenta-yellow summer sequential linearly-increasing shades of green-yellow winter linearly-increasing shades of blue-green ========= ======================================================= A set of palettes from the `Yorick scientific visualisation package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of the GIST package, both by David H. Munro are included: ============ ======================================================= Colormap Description ============ ======================================================= gist_earth mapmaker's colors from dark blue deep ocean to green lowlands to brown highlands to white mountains gist_heat sequential increasing black-red-orange-white, to emulate blackbody radiation from an iron bar as it grows hotter gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white colormap from National Center for Atmospheric Research [#]_ gist_rainbow runs through the colors in spectral order from red to violet at full saturation (like *hsv* but not cyclic) gist_stern "Stern special" color table from Interactive Data Language software ============ ======================================================= Other miscellaneous schemes: ============= ======================================================= Colormap Description ============= ======================================================= afmhot sequential black-orange-yellow-white blackbody spectrum, commonly used in atomic force microscopy brg blue-red-green bwr diverging blue-white-red coolwarm diverging blue-gray-red, meant to avoid issues with 3D shading, color blindness, and ordering of colors [#]_ CMRmap "Default colormaps on color images often reproduce to confusing grayscale images. The proposed colormap maintains an aesthetically pleasing color image that automatically reproduces to a monotonic grayscale with discrete, quantifiable saturation levels." [#]_ cubehelix Unlike most other color schemes cubehelix was designed by D.A. Green to be monotonically increasing in terms of perceived brightness. Also, when printed on a black and white postscript printer, the scheme results in a greyscale with monotonically increasing brightness. This color scheme is named cubehelix because the r,g,b values produced can be visualised as a squashed helix around the diagonal in the r,g,b color cube. gnuplot gnuplot's traditional pm3d scheme (black-blue-red-yellow) gnuplot2 sequential color printable as gray (black-blue-violet-yellow-white) ocean green-blue-white rainbow spectral purple-blue-green-yellow-orange-red colormap with diverging luminance seismic diverging blue-white-red nipy_spectral black-purple-blue-green-yellow-red-white spectrum, originally from the Neuroimaging in Python project terrain mapmaker's colors, blue-green-yellow-brown-white, originally from IGOR Pro ============= ======================================================= The following colormaps are redundant and may be removed in future versions. It's recommended to use the names in the descriptions instead, which produce identical output: ========= ======================================================= Colormap Description ========= ======================================================= gist_gray identical to *gray* gist_yarg identical to *gray_r* binary identical to *gray_r* spectral identical to *nipy_spectral* [#]_ ========= ======================================================= .. rubric:: Footnotes .. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor choice for scientific visualization by many researchers: `Rainbow Color Map (Still) Considered Harmful <http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_ .. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command Language. See `Color Table Gallery <https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_ .. [#] See `Diverging Color Maps for Scientific Visualization <http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland. .. [#] See `A Color Map for Effective Black-and-White Rendering of Color-Scale Images <https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_ by Carey Rappaport .. [#] Changed to distinguish from ColorBrewer's *Spectral* map. :func:`spectral` still works, but ``set_cmap('nipy_spectral')`` is recommended for clarity. """ return sorted(cm.cmap_d)
def _setup_pyplot_info_docstrings(): """ Generates the plotting and docstring. These must be done after the entire module is imported, so it is called from the end of this module, which is generated by boilerplate.py. """ # Generate the plotting docstring import re def pad(s, l): """Pad string *s* to length *l*.""" if l < len(s): return s[:l] return s + ' ' * (l - len(s)) commands = get_plot_commands() first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL) # Collect the first sentence of the docstring for all of the # plotting commands. rows = [] max_name = 0 max_summary = 0 for name in commands: doc = globals()[name].__doc__ summary = '' if doc is not None: match = first_sentence.match(doc) if match is not None: summary = match.group(0).strip().replace('\n', ' ') name = '`%s`' % name rows.append([name, summary]) max_name = max(max_name, len(name)) max_summary = max(max_summary, len(summary)) lines = [] sep = '=' * max_name + ' ' + '=' * max_summary lines.append(sep) lines.append(' '.join([pad("Function", max_name), pad("Description", max_summary)])) lines.append(sep) for name, summary in rows: lines.append(' '.join([pad(name, max_name), pad(summary, max_summary)])) lines.append(sep) plotting.__doc__ = '\n'.join(lines) ## Plotting part 1: manually generated functions and wrappers ##
[docs]def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) return ret
colorbar.__doc__ = matplotlib.colorbar.colorbar_doc
[docs]def clim(vmin=None, vmax=None): """ Set the color limits of the current image. To apply clim to all axes images do:: clim(0, 0.5) If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling. If you want to set the clim of multiple images, use, for example:: for im in gca().get_images(): im.set_clim(0, 0.05) """ im = gci() if im is None: raise RuntimeError('You must first define an image, e.g., with imshow') im.set_clim(vmin, vmax)
[docs]def set_cmap(cmap): """ Set the default colormap. Applies to the current image if any. See help(colormaps) for more information. *cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or the name of a registered colormap. See :func:`matplotlib.cm.register_cmap` and :func:`matplotlib.cm.get_cmap`. """ cmap = cm.get_cmap(cmap) rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap)
[docs]@docstring.copy_dedent(_imread) def imread(*args, **kwargs): return _imread(*args, **kwargs)
[docs]@docstring.copy_dedent(_imsave) def imsave(*args, **kwargs): return _imsave(*args, **kwargs)
[docs]def matshow(A, fignum=None, **kw): """ Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. With the exception of *fignum*, keyword arguments are passed to :func:`~matplotlib.pyplot.imshow`. You may set the *origin* kwarg to "lower" if you want the first row in the array to be at the bottom instead of the top. *fignum*: [ None | integer | False ] By default, :func:`matshow` creates a new figure window with automatic numbering. If *fignum* is given as an integer, the created figure will use this figure number. Because of how :func:`matshow` tries to set the figure aspect ratio to be the one of the array, if you provide the number of an already existing figure, strange things may happen. If *fignum* is *False* or 0, a new figure window will **NOT** be created. """ A = np.asanyarray(A) if fignum is False or fignum is 0: ax = gca() else: # Extract actual aspect ratio of array and make appropriately sized figure fig = figure(fignum, figsize=figaspect(A)) ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) im = ax.matshow(A, **kw) sci(im) return im
[docs]def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. """ # If an axis already exists, check if it has a polar projection if gcf().get_axes(): if not isinstance(gca(), PolarAxes): warnings.warn('Trying to create polar plot on an axis that does ' 'not have a polar projection.') ax = gca(polar=True) ret = ax.plot(*args, **kwargs) return ret
[docs]def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', names=None, subplots=True, newfig=True, **kwargs): """ Plot the data in a file. *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots if *subplots* is *True* (the default), or for lines in a single subplot if *subplots* is *False*. *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, e.g., integer column numbers in both or column names in both. If *subplots* is *False*, then including any function such as 'semilogy' that changes the axis scaling will set the scaling for all columns. *comments*, *skiprows*, *checkrows*, *delimiter*, and *names* are all passed on to :func:`matplotlib.pylab.csv2rec` to load the data into a record array. If *newfig* is *True*, the plot always will be made in a new figure; if *False*, it will be made in the current figure if one exists, else in a new figure. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended as an alternative interface to general plotting with pyplot or matplotlib. """ if newfig: fig = figure() else: fig = gcf() if len(cols)<1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = dict() from matplotlib.cbook import mplDeprecation with warnings.catch_warnings(): warnings.simplefilter('ignore', mplDeprecation) r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter, names=names) def getname_val(identifier): 'return the name and column data for identifier' if isinstance(identifier, six.string_types): return identifier, r[identifier] elif is_numlike(identifier): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) ynamelist = [] if len(cols)==1: ax1 = fig.add_subplot(1,1,1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_ylabel(xname) else: N = len(cols) for i in range(1,N): if subplots: if i==1: ax = ax1 = fig.add_subplot(N-1,1,i) else: ax = fig.add_subplot(N-1,1,i, sharex=ax1) elif i==1: ax = fig.add_subplot(1,1,1) yname, y = getname_val(cols[i]) ynamelist.append(yname) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) if subplots: ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if not subplots: ax.legend(ynamelist, loc='best') if xname=='date': fig.autofmt_xdate()
def _autogen_docstring(base): """Autogenerated wrappers will get their docstring from a base function with an addendum.""" #msg = "\n\nAdditional kwargs: hold = [True|False] overrides default hold state" msg = '' addendum = docstring.Appender(msg, '\n\n') return lambda func: addendum(docstring.copy_dedent(base)(func)) # This function cannot be generated by boilerplate.py because it may # return an image or a line.
[docs]@_autogen_docstring(Axes.spy) def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs): ax = gca() hold = kwargs.pop('hold', None) # allow callers to override the hold state by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs) finally: ax._hold = washold if isinstance(ret, cm.ScalarMappable): sci(ret) return ret
# just to be safe. Interactive mode can be turned on without # calling `plt.ion()` so register it again here. # This is safe because multiple calls to `install_repl_displayhook` # are no-ops and the registered function respect `mpl.is_interactive()` # to determine if they should trigger a draw. install_repl_displayhook() ################# REMAINING CONTENT GENERATED BY boilerplate.py ############## # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.acorr) def acorr(x, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.acorr(x, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.angle_spectrum) def angle_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.angle_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.arrow) def arrow(x, y, dx, dy, hold=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.arrow(x, y, dx, dy, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.axhline) def axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.axhline(y=y, xmin=xmin, xmax=xmax, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.axhspan) def axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.axvline) def axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.axvline(x=x, ymin=ymin, ymax=ymax, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.axvspan) def axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.bar) def bar(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.bar(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.barh) def barh(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.barh(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.broken_barh) def broken_barh(xranges, yrange, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.broken_barh(xranges, yrange, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.boxplot) def boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False, zorder=None, hold=None, data=None): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.boxplot(x, notch=notch, sym=sym, vert=vert, whis=whis, positions=positions, widths=widths, patch_artist=patch_artist, bootstrap=bootstrap, usermedians=usermedians, conf_intervals=conf_intervals, meanline=meanline, showmeans=showmeans, showcaps=showcaps, showbox=showbox, showfliers=showfliers, boxprops=boxprops, labels=labels, flierprops=flierprops, medianprops=medianprops, meanprops=meanprops, capprops=capprops, whiskerprops=whiskerprops, manage_xticks=manage_xticks, autorange=autorange, zorder=zorder, data=data) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.cohere) def cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.cohere(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.clabel) def clabel(CS, *args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.clabel(CS, *args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.contour) def contour(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.contour(*args, **kwargs) finally: ax._hold = washold if ret._A is not None: sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.contourf) def contourf(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.contourf(*args, **kwargs) finally: ax._hold = washold if ret._A is not None: sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.csd) def csd(x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, return_line=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.csd(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, return_line=return_line, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.errorbar) def errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, capsize=None, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor, elinewidth=elinewidth, capsize=capsize, barsabove=barsabove, lolims=lolims, uplims=uplims, xlolims=xlolims, xuplims=xuplims, errorevery=errorevery, capthick=capthick, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.eventplot) def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1, linewidths=None, colors=None, linestyles='solid', hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.eventplot(positions, orientation=orientation, lineoffsets=lineoffsets, linelengths=linelengths, linewidths=linewidths, colors=colors, linestyles=linestyles, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.fill) def fill(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.fill(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.fill_between) def fill_between(x, y1, y2=0, where=None, interpolate=False, step=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.fill_between(x, y1, y2=y2, where=where, interpolate=interpolate, step=step, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.fill_betweenx) def fill_betweenx(y, x1, x2=0, where=None, step=None, interpolate=False, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.fill_betweenx(y, x1, x2=x2, where=where, step=step, interpolate=interpolate, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.hexbin) def hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=np.mean, mincnt=None, marginals=False, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.hexbin(x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale, yscale=yscale, extent=extent, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, edgecolors=edgecolors, reduce_C_function=reduce_C_function, mincnt=mincnt, marginals=marginals, data=data, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.hist) def hist(x, bins=None, range=None, density=None, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.hist(x, bins=bins, range=range, density=density, weights=weights, cumulative=cumulative, bottom=bottom, histtype=histtype, align=align, orientation=orientation, rwidth=rwidth, log=log, color=color, label=label, stacked=stacked, normed=normed, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.hist2d) def hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None, cmax=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.hist2d(x, y, bins=bins, range=range, normed=normed, weights=weights, cmin=cmin, cmax=cmax, data=data, **kwargs) finally: ax._hold = washold sci(ret[-1]) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.hlines) def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles, label=label, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.imshow) def imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.imshow(X, cmap=cmap, norm=norm, aspect=aspect, interpolation=interpolation, alpha=alpha, vmin=vmin, vmax=vmax, origin=origin, extent=extent, shape=shape, filternorm=filternorm, filterrad=filterrad, imlim=imlim, resample=resample, url=url, data=data, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.loglog) def loglog(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.loglog(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.magnitude_spectrum) def magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.magnitude_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, scale=scale, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.pcolor) def pcolor(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.pcolor(*args, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.pcolormesh) def pcolormesh(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.pcolormesh(*args, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.phase_spectrum) def phase_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.phase_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.pie) def pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, hold=None, data=None): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.pie(x, explode=explode, labels=labels, colors=colors, autopct=autopct, pctdistance=pctdistance, shadow=shadow, labeldistance=labeldistance, startangle=startangle, radius=radius, counterclock=counterclock, wedgeprops=wedgeprops, textprops=textprops, center=center, frame=frame, rotatelabels=rotatelabels, data=data) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.plot) def plot(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.plot(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.plot_date) def plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.plot_date(x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.psd) def psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, return_line=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.psd(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, return_line=return_line, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.quiver) def quiver(*args, **kw): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kw.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.quiver(*args, **kw) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.quiverkey) def quiverkey(*args, **kw): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kw.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.quiverkey(*args, **kw) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.scatter) def scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.scatter(x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, verts=verts, edgecolors=edgecolors, data=data, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.semilogx) def semilogx(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.semilogx(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.semilogy) def semilogy(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.semilogy(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.specgram) def specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.specgram(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, data=data, **kwargs) finally: ax._hold = washold sci(ret[-1]) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.stackplot) def stackplot(x, *args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.stackplot(x, *args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.stem) def stem(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.stem(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.step) def step(x, y, *args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.step(x, y, *args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.streamplot) def streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None, zorder=None, start_points=None, maxlength=4.0, integration_direction='both', hold=None, data=None): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.streamplot(x, y, u, v, density=density, linewidth=linewidth, color=color, cmap=cmap, norm=norm, arrowsize=arrowsize, arrowstyle=arrowstyle, minlength=minlength, transform=transform, zorder=zorder, start_points=start_points, maxlength=maxlength, integration_direction=integration_direction, data=data) finally: ax._hold = washold sci(ret.lines) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.tricontour) def tricontour(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.tricontour(*args, **kwargs) finally: ax._hold = washold if ret._A is not None: sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.tricontourf) def tricontourf(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.tricontourf(*args, **kwargs) finally: ax._hold = washold if ret._A is not None: sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.tripcolor) def tripcolor(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.tripcolor(*args, **kwargs) finally: ax._hold = washold sci(ret) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.triplot) def triplot(*args, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kwargs.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.triplot(*args, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.violinplot) def violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, points=100, bw_method=None, hold=None, data=None): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.violinplot(dataset, positions=positions, vert=vert, widths=widths, showmeans=showmeans, showextrema=showextrema, showmedians=showmedians, points=points, bw_method=bw_method, data=data) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.vlines) def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles, label=label, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.xcorr) def xcorr(x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.xcorr(x, y, normed=normed, detrend=detrend, usevlines=usevlines, maxlags=maxlags, data=data, **kwargs) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@_autogen_docstring(Axes.barbs) def barbs(*args, **kw): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold hold = kw.pop('hold', None) if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.barbs(*args, **kw) finally: ax._hold = washold return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.cla) def cla(): ret = gca().cla() return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.grid) def grid(b=None, which='major', axis='both', **kwargs): ret = gca().grid(b=b, which=which, axis=axis, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.legend) def legend(*args, **kwargs): ret = gca().legend(*args, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.table) def table(**kwargs): ret = gca().table(**kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.text) def text(x, y, s, fontdict=None, withdash=False, **kwargs): ret = gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.annotate) def annotate(*args, **kwargs): ret = gca().annotate(*args, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.ticklabel_format) def ticklabel_format(**kwargs): ret = gca().ticklabel_format(**kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.locator_params) def locator_params(axis='both', tight=None, **kwargs): ret = gca().locator_params(axis=axis, tight=tight, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.tick_params) def tick_params(axis='both', **kwargs): ret = gca().tick_params(axis=axis, **kwargs) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.margins) def margins(*args, **kw): ret = gca().margins(*args, **kw) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]@docstring.copy_dedent(Axes.autoscale) def autoscale(enable=True, axis='both', tight=None): ret = gca().autoscale(enable=enable, axis=axis, tight=tight) return ret
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def autumn(): """ Set the colormap to "autumn". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("autumn")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def bone(): """ Set the colormap to "bone". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("bone")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def cool(): """ Set the colormap to "cool". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("cool")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def copper(): """ Set the colormap to "copper". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("copper")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def flag(): """ Set the colormap to "flag". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("flag")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def gray(): """ Set the colormap to "gray". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("gray")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def hot(): """ Set the colormap to "hot". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("hot")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def hsv(): """ Set the colormap to "hsv". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("hsv")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def jet(): """ Set the colormap to "jet". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("jet")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def pink(): """ Set the colormap to "pink". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("pink")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def prism(): """ Set the colormap to "prism". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("prism")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def spring(): """ Set the colormap to "spring". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("spring")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def summer(): """ Set the colormap to "summer". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("summer")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def winter(): """ Set the colormap to "winter". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("winter")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def magma(): """ Set the colormap to "magma". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("magma")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def inferno(): """ Set the colormap to "inferno". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("inferno")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def plasma(): """ Set the colormap to "plasma". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("plasma")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def viridis(): """ Set the colormap to "viridis". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("viridis")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def nipy_spectral(): """ Set the colormap to "nipy_spectral". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("nipy_spectral")
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
[docs]def spectral(): """ Set the colormap to "spectral". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ from matplotlib.cbook import warn_deprecated warn_deprecated( "2.0", name="spectral", obj_type="colormap" ) set_cmap("spectral")
_setup_pyplot_info_docstrings()