You are reading an old version of the documentation (v1.5.1). For the latest version see

We're updating the default styles for Matplotlib 2.0

Learn what to expect in the new updates



This Page

statistics example code: histogram_demo_cumulative.pyΒΆ

(Source code, png, hires.png, pdf)

Demo of the histogram (hist) function used to plot a cumulative distribution.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import mlab

mu = 200
sigma = 25
n_bins = 50
x = mu + sigma*np.random.randn(10000)

n, bins, patches = plt.hist(x, n_bins, normed=1,
                            histtype='step', cumulative=True)

# Add a line showing the expected distribution.
y = mlab.normpdf(bins, mu, sigma).cumsum()
y /= y[-1]
plt.plot(bins, y, 'k--', linewidth=1.5)

# Overlay a reversed cumulative histogram.
plt.hist(x, bins=bins, normed=1, histtype='step', cumulative=-1)

plt.ylim(0, 1.05)
plt.title('cumulative step')

Keywords: python, matplotlib, pylab, example, codex (see Search examples)