Skip to main content
Ctrl+K
Logo image Logo image
  • Plot types
  • Examples
  • Tutorials
  • Reference
  • User guide
  • Develop
  • Release notes
  • Plot types
  • Examples
  • Tutorials
  • Reference
  • User guide
  • Develop
  • Release notes

Section Navigation

  • Introductory
    • Quick start guide
    • Pyplot tutorial
    • Image tutorial
    • The Lifecycle of a Plot
    • Customizing Matplotlib with style sheets and rcParams
  • Intermediate
    • Artist tutorial
    • Legend guide
    • Styling with cycler
    • Constrained Layout Guide
    • Tight Layout guide
    • Arranging multiple Axes in a Figure
    • Autoscaling
    • origin and extent in imshow
  • Advanced
    • Faster rendering by using blitting
    • Path Tutorial
    • Path effects guide
    • Transformations Tutorial
  • Colors
    • Specifying colors
    • Customized Colorbars Tutorial
    • Creating Colormaps in Matplotlib
    • Colormap Normalization
    • Choosing Colormaps in Matplotlib
  • Provisional
    • Complex and semantic figure composition
  • Text
    • Text in Matplotlib Plots
    • Text properties and layout
    • Annotations
    • Writing mathematical expressions
    • Text rendering with XeLaTeX/LuaLaTeX via the pgf backend
    • Text rendering with LaTeX
  • Toolkits
    • The axes_grid1 toolkit
    • The axisartist toolkit
    • The mplot3d toolkit

Introductory#

These tutorials cover the basics of creating visualizations with Matplotlib, as well as some best-practices in using the package effectively.

Quick start guide

Quick start guide

Quick start guide
Pyplot tutorial

Pyplot tutorial

Pyplot tutorial
Image tutorial

Image tutorial

Image tutorial
The Lifecycle of a Plot

The Lifecycle of a Plot

The Lifecycle of a Plot
Customizing Matplotlib with style sheets and rcParams

Customizing Matplotlib with style sheets and rcParams

Customizing Matplotlib with style sheets and rcParams

© Copyright 2002–2012 John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplotlib development team; 2012–2023 The Matplotlib development team.

Built with the PyData Sphinx Theme 0.12.0.

Created using Sphinx 5.3.0.