Boxplot DemoΒΆ

Example boxplot code

import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility

# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low))
Basic Plot


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c76baea00>, <matplotlib.lines.Line2D object at 0x7f1c76bae4c0>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c769c25b0>, <matplotlib.lines.Line2D object at 0x7f1c769c2be0>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c76bae520>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c769c2370>], 'fliers': [<matplotlib.lines.Line2D object at 0x7f1c769c2cd0>], 'means': []}
fig2, ax2 = plt.subplots()
ax2.set_title('Notched boxes')
ax2.boxplot(data, notch=True)
Notched boxes


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c76e20c70>, <matplotlib.lines.Line2D object at 0x7f1c77030970>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c76b8b8b0>, <matplotlib.lines.Line2D object at 0x7f1c76c75730>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c76e20490>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c76c75460>], 'fliers': [<matplotlib.lines.Line2D object at 0x7f1c76c75310>], 'means': []}
green_diamond = dict(markerfacecolor='g', marker='D')
fig3, ax3 = plt.subplots()
ax3.set_title('Changed Outlier Symbols')
ax3.boxplot(data, flierprops=green_diamond)
Changed Outlier Symbols


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c761b4340>, <matplotlib.lines.Line2D object at 0x7f1c761be220>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c761be9a0>, <matplotlib.lines.Line2D object at 0x7f1c76b26040>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c7619ea60>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c76b263d0>], 'fliers': [<matplotlib.lines.Line2D object at 0x7f1c76b26730>], 'means': []}
fig4, ax4 = plt.subplots()
ax4.set_title('Hide Outlier Points')
ax4.boxplot(data, showfliers=False)
Hide Outlier Points


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c76b72250>, <matplotlib.lines.Line2D object at 0x7f1c76b725e0>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c76b72970>, <matplotlib.lines.Line2D object at 0x7f1c76b72d00>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c76b78e80>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c76b6c0d0>], 'fliers': [], 'means': []}
red_square = dict(markerfacecolor='r', marker='s')
fig5, ax5 = plt.subplots()
ax5.set_title('Horizontal Boxes')
ax5.boxplot(data, vert=False, flierprops=red_square)
Horizontal Boxes


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c76e2ee50>, <matplotlib.lines.Line2D object at 0x7f1c76e2f220>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c76e2f5b0>, <matplotlib.lines.Line2D object at 0x7f1c76e2f940>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c76e2eac0>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c76e2fcd0>], 'fliers': [<matplotlib.lines.Line2D object at 0x7f1c76e38070>], 'means': []}
fig6, ax6 = plt.subplots()
ax6.set_title('Shorter Whisker Length')
ax6.boxplot(data, flierprops=red_square, vert=False, whis=0.75)
Shorter Whisker Length


{'whiskers': [<matplotlib.lines.Line2D object at 0x7f1c767f3bb0>, <matplotlib.lines.Line2D object at 0x7f1c767f3f40>], 'caps': [<matplotlib.lines.Line2D object at 0x7f1c767c1310>, <matplotlib.lines.Line2D object at 0x7f1c767c16a0>], 'boxes': [<matplotlib.lines.Line2D object at 0x7f1c767f3820>], 'medians': [<matplotlib.lines.Line2D object at 0x7f1c767c1a30>], 'fliers': [<matplotlib.lines.Line2D object at 0x7f1c767c1d90>], 'means': []}

Fake up some more data

Making a 2-D array only works if all the columns are the same length. If they are not, then use a list instead. This is actually more efficient because boxplot converts a 2-D array into a list of vectors internally anyway.

data = [data, d2, d2[::2]]
fig7, ax7 = plt.subplots()
ax7.set_title('Multiple Samples with Different sizes')
Multiple Samples with Different sizes


The use of the following functions, methods, classes and modules is shown in this example:

Total running time of the script: ( 0 minutes 1.640 seconds)

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery