.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gallery/animation/double_pendulum.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. meta:: :keywords: codex .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gallery_animation_double_pendulum.py: =========================== The double pendulum problem =========================== This animation illustrates the double pendulum problem. Double pendulum formula translated from the C code at http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c Output generated via `matplotlib.animation.Animation.to_jshtml`. .. GENERATED FROM PYTHON SOURCE LINES 13-111 .. container:: sphx-glr-animation .. raw:: html
.. code-block:: Python import matplotlib.pyplot as plt import numpy as np from numpy import cos, sin import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m L = L1 + L2 # maximal length of the combined pendulum M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg t_stop = 2.5 # how many seconds to simulate history_len = 500 # how many trajectory points to display def derivs(t, state): dydx = np.zeros_like(state) dydx[0] = state[1] delta = state[2] - state[0] den1 = (M1+M2) * L1 - M2 * L1 * cos(delta) * cos(delta) dydx[1] = ((M2 * L1 * state[1] * state[1] * sin(delta) * cos(delta) + M2 * G * sin(state[2]) * cos(delta) + M2 * L2 * state[3] * state[3] * sin(delta) - (M1+M2) * G * sin(state[0])) / den1) dydx[2] = state[3] den2 = (L2/L1) * den1 dydx[3] = ((- M2 * L2 * state[3] * state[3] * sin(delta) * cos(delta) + (M1+M2) * G * sin(state[0]) * cos(delta) - (M1+M2) * L1 * state[1] * state[1] * sin(delta) - (M1+M2) * G * sin(state[2])) / den2) return dydx # create a time array from 0..t_stop sampled at 0.02 second steps dt = 0.01 t = np.arange(0, t_stop, dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate the ODE using Euler's method y = np.empty((len(t), 4)) y[0] = state for i in range(1, len(t)): y[i] = y[i - 1] + derivs(t[i - 1], y[i - 1]) * dt # A more accurate estimate could be obtained e.g. using scipy: # # y = scipy.integrate.solve_ivp(derivs, t[[0, -1]], state, t_eval=t).y.T x1 = L1*sin(y[:, 0]) y1 = -L1*cos(y[:, 0]) x2 = L2*sin(y[:, 2]) + x1 y2 = -L2*cos(y[:, 2]) + y1 fig = plt.figure(figsize=(5, 4)) ax = fig.add_subplot(autoscale_on=False, xlim=(-L, L), ylim=(-L, 1.)) ax.set_aspect('equal') ax.grid() line, = ax.plot([], [], 'o-', lw=2) trace, = ax.plot([], [], '.-', lw=1, ms=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def animate(i): thisx = [0, x1[i], x2[i]] thisy = [0, y1[i], y2[i]] history_x = x2[:i] history_y = y2[:i] line.set_data(thisx, thisy) trace.set_data(history_x, history_y) time_text.set_text(time_template % (i*dt)) return line, trace, time_text ani = animation.FuncAnimation( fig, animate, len(y), interval=dt*1000, blit=True) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 24.349 seconds) .. _sphx_glr_download_gallery_animation_double_pendulum.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: double_pendulum.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: double_pendulum.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_