Contour Demo

Illustrate simple contour plotting, contours on an image with a colorbar for the contours, and labelled contours.

See also the contour image example.

import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt


delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

Create a simple contour plot with labels using default colors. The inline argument to clabel will control whether the labels are draw over the line segments of the contour, removing the lines beneath the label

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
ax.clabel(CS, inline=1, fontsize=10)
ax.set_title('Simplest default with labels')
../../_images/sphx_glr_contour_demo_001.png

Out:

Text(0.5, 1.0, 'Simplest default with labels')

contour labels can be placed manually by providing list of positions (in data coordinate). See ginput_manual_clabel.py for interactive placement.

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]
ax.clabel(CS, inline=1, fontsize=10, manual=manual_locations)
ax.set_title('labels at selected locations')
../../_images/sphx_glr_contour_demo_002.png

Out:

Text(0.5, 1.0, 'labels at selected locations')

You can force all the contours to be the same color.

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6, colors='k')  # Negative contours default to dashed.
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours dashed')
../../_images/sphx_glr_contour_demo_003.png

Out:

Text(0.5, 1.0, 'Single color - negative contours dashed')

You can set negative contours to be solid instead of dashed:

matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6, colors='k')  # Negative contours default to dashed.
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours solid')
../../_images/sphx_glr_contour_demo_004.png

Out:

Text(0.5, 1.0, 'Single color - negative contours solid')

And you can manually specify the colors of the contour

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
                linewidths=np.arange(.5, 4, .5),
                colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5'),
                )
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Crazy lines')
../../_images/sphx_glr_contour_demo_005.png

Out:

Text(0.5, 1.0, 'Crazy lines')

Or you can use a colormap to specify the colors; the default colormap will be used for the contour lines

fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='bilinear', origin='lower',
                cmap=cm.gray, extent=(-3, 3, -2, 2))
levels = np.arange(-1.2, 1.6, 0.2)
CS = ax.contour(Z, levels, origin='lower', cmap='flag',
                linewidths=2, extent=(-3, 3, -2, 2))

# Thicken the zero contour.
zc = CS.collections[6]
plt.setp(zc, linewidth=4)

ax.clabel(CS, levels[1::2],  # label every second level
          inline=1, fmt='%1.1f', fontsize=14)

# make a colorbar for the contour lines
CB = fig.colorbar(CS, shrink=0.8, extend='both')

ax.set_title('Lines with colorbar')

# We can still add a colorbar for the image, too.
CBI = fig.colorbar(im, orientation='horizontal', shrink=0.8)

# This makes the original colorbar look a bit out of place,
# so let's improve its position.

l, b, w, h = ax.get_position().bounds
ll, bb, ww, hh = CB.ax.get_position().bounds
CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])

plt.show()
../../_images/sphx_glr_contour_demo_006.png

References

The use of the following functions and methods is shown in this example:

import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.axes.Axes.clabel
matplotlib.pyplot.clabel
matplotlib.axes.Axes.set_position
matplotlib.axes.Axes.get_position

Out:

<function _AxesBase.get_position at 0x7f6ea13cfaf0>

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery