You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Applications are open for the 2018 John Hunter Matplotlib Summer Fellowship. Apply now!
Version 2.2.2.post1754+g0766e5365
matplotlib
Fork me on GitHub

Related Topics

Colorbar Tick Labelling DemoΒΆ

Produce custom labelling for a colorbar.

Contributed by Scott Sinclair

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from numpy.random import randn

Make plot with vertical (default) colorbar

fig, ax = plt.subplots()

data = np.clip(randn(250, 250), -1, 1)

cax = ax.imshow(data, interpolation='nearest', cmap=cm.coolwarm)
ax.set_title('Gaussian noise with vertical colorbar')

# Add colorbar, make sure to specify tick locations to match desired ticklabels
cbar = fig.colorbar(cax, ticks=[-1, 0, 1])
cbar.ax.set_yticklabels(['< -1', '0', '> 1'])  # vertically oriented colorbar
../../_images/sphx_glr_colorbar_tick_labelling_demo_001.png

Make plot with horizontal colorbar

fig, ax = plt.subplots()

data = np.clip(randn(250, 250), -1, 1)

cax = ax.imshow(data, interpolation='nearest', cmap=cm.afmhot)
ax.set_title('Gaussian noise with horizontal colorbar')

cbar = fig.colorbar(cax, ticks=[-1, 0, 1], orientation='horizontal')
cbar.ax.set_xticklabels(['Low', 'Medium', 'High'])  # horizontal colorbar

plt.show()
../../_images/sphx_glr_colorbar_tick_labelling_demo_002.png

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery