You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Applications are open for the 2018 John Hunter Matplotlib Summer Fellowship. Apply now!
Version 2.2.2.post1768+g23420a4c1
matplotlib
Fork me on GitHub

Related Topics

Lorenz AttractorΒΆ

This is an example of plotting Edward Lorenz's 1963 "Deterministic Nonperiodic Flow" in a 3-dimensional space using mplot3d.

Note: Because this is a simple non-linear ODE, it would be more easily
done using SciPy's ode solver, but this approach depends only upon NumPy.
../../_images/sphx_glr_lorenz_attractor_001.png
import numpy as np
import matplotlib.pyplot as plt
# This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import


def lorenz(x, y, z, s=10, r=28, b=2.667):
    '''
    Given:
       x, y, z: a point of interest in three dimensional space
       s, r, b: parameters defining the lorenz attractor
    Returns:
       x_dot, y_dot, z_dot: values of the lorenz attractor's partial
           derivatives at the point x, y, z
    '''
    x_dot = s*(y - x)
    y_dot = r*x - y - x*z
    z_dot = x*y - b*z
    return x_dot, y_dot, z_dot


dt = 0.01
num_steps = 10000

# Need one more for the initial values
xs = np.empty((num_steps + 1,))
ys = np.empty((num_steps + 1,))
zs = np.empty((num_steps + 1,))

# Set initial values
xs[0], ys[0], zs[0] = (0., 1., 1.05)

# Step through "time", calculating the partial derivatives at the current point
# and using them to estimate the next point
for i in range(num_steps):
    x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i])
    xs[i + 1] = xs[i] + (x_dot * dt)
    ys[i + 1] = ys[i] + (y_dot * dt)
    zs[i + 1] = zs[i] + (z_dot * dt)


# Plot
fig = plt.figure()
ax = fig.gca(projection='3d')

ax.plot(xs, ys, zs, lw=0.5)
ax.set_xlabel("X Axis")
ax.set_ylabel("Y Axis")
ax.set_zlabel("Z Axis")
ax.set_title("Lorenz Attractor")

plt.show()

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery