You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Applications are open for the 2018 John Hunter Matplotlib Summer Fellowship. Apply now!
Version 2.2.2.post1705+gc85f8217d
Fork me on GitHub

Table Of Contents

Related Topics

Multi Image

Make a set of images with a single colormap, norm, and colorbar.

from matplotlib import colors
import matplotlib.pyplot as plt
import numpy as np

Nr = 3
Nc = 2
cmap = "cool"

fig, axs = plt.subplots(Nr, Nc)
fig.suptitle('Multiple images')

images = []
for i in range(Nr):
    for j in range(Nc):
        # Generate data with a range that varies from one plot to the next.
        data = ((1 + i + j) / 10) * np.random.rand(10, 20) * 1e-6
        images.append(axs[i, j].imshow(data, cmap=cmap))
        axs[i, j].label_outer()

# Find the min and max of all colors for use in setting the color scale.
vmin = min(image.get_array().min() for image in images)
vmax = max(image.get_array().max() for image in images)
norm = colors.Normalize(vmin=vmin, vmax=vmax)
for im in images:

fig.colorbar(images[0], ax=axs, orientation='horizontal', fraction=.1)

# Make images respond to changes in the norm of other images (e.g. via the
# "edit axis, curves and images parameters" GUI on Qt), but be careful not to
# recurse infinitely!
def update(changed_image):
    for im in images:
        if (changed_image.get_cmap() != im.get_cmap()
                or changed_image.get_clim() != im.get_clim()):

for im in images:
    im.callbacksSM.connect('changed', update)