You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Applications are open for the 2018 John Hunter Matplotlib Summer Fellowship. Apply now!
Version 2.2.2.post1744+g9382a0569
Fork me on GitHub

Table Of Contents

Related Topics

Interpolations for imshow/matshow

This example displays the difference between interpolation methods for imshow() and matshow().

If interpolation is None, it defaults to the image.interpolation rc parameter. If the interpolation is 'none', then no interpolation is performed for the Agg, ps and pdf backends. Other backends will default to 'nearest'.

For the Agg, ps and pdf backends, interpolation = 'none' works well when a big image is scaled down, while interpolation = 'nearest' works well when a small image is scaled up.

import matplotlib.pyplot as plt
import numpy as np

methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
           'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
           'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']

# Fixing random state for reproducibility

grid = np.random.rand(4, 4)

fig, axs = plt.subplots(nrows=3, ncols=6, figsize=(9.3, 6),
                        subplot_kw={'xticks': [], 'yticks': []})

fig.subplots_adjust(left=0.03, right=0.97, hspace=0.3, wspace=0.05)

for ax, interp_method in zip(axs.flat, methods):
    ax.imshow(grid, interpolation=interp_method, cmap='viridis')



The use of the following functions and methods is shown in this example:

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery