You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Applications are open for the 2018 John Hunter Matplotlib Summer Fellowship. Apply now!
Version 2.2.2.post1758+gbc39b1c4a
matplotlib
Fork me on GitHub

Table Of Contents

Related Topics

Contour Demo

Illustrate simple contour plotting, contours on an image with a colorbar for the contours, and labelled contours.

See also the contour image example.

import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt


delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

Create a simple contour plot with labels using default colors. The inline argument to clabel will control whether the labels are draw over the line segments of the contour, removing the lines beneath the label

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
ax.clabel(CS, inline=1, fontsize=10)
ax.set_title('Simplest default with labels')
../../_images/sphx_glr_contour_demo_001.png

contour labels can be placed manually by providing list of positions (in data coordinate). See ginput_manual_clabel.py for interactive placement.

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]
ax.clabel(CS, inline=1, fontsize=10, manual=manual_locations)
ax.set_title('labels at selected locations')
../../_images/sphx_glr_contour_demo_002.png

You can force all the contours to be the same color.

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
                 colors='k',  # negative contours will be dashed by default
                 )
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours dashed')
../../_images/sphx_glr_contour_demo_003.png

You can set negative contours to be solid instead of dashed:

matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
                 colors='k',  # negative contours will be dashed by default
                 )
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours solid')
../../_images/sphx_glr_contour_demo_004.png

And you can manually specify the colors of the contour

fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
                 linewidths=np.arange(.5, 4, .5),
                 colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5')
                 )
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Crazy lines')
../../_images/sphx_glr_contour_demo_005.png

Or you can use a colormap to specify the colors; the default colormap will be used for the contour lines

fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='bilinear', origin='lower',
                cmap=cm.gray, extent=(-3, 3, -2, 2))
levels = np.arange(-1.2, 1.6, 0.2)
CS = ax.contour(Z, levels, origin='lower', cmap='flag',
                linewidths=2, extent=(-3, 3, -2, 2))

# Thicken the zero contour.
zc = CS.collections[6]
plt.setp(zc, linewidth=4)

ax.clabel(CS, levels[1::2],  # label every second level
          inline=1, fmt='%1.1f', fontsize=14)

# make a colorbar for the contour lines
CB = fig.colorbar(CS, shrink=0.8, extend='both')

ax.set_title('Lines with colorbar')

# We can still add a colorbar for the image, too.
CBI = fig.colorbar(im, orientation='horizontal', shrink=0.8)

# This makes the original colorbar look a bit out of place,
# so let's improve its position.

l, b, w, h = ax.get_position().bounds
ll, bb, ww, hh = CB.ax.get_position().bounds
CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])

plt.show()
../../_images/sphx_glr_contour_demo_006.png