Composable cycles¶
- Version:
0.12
- Date:
Jan 18, 2024
Docs |
|
PyPI |
|
GitHub |
cycler
API¶
|
Create a new |
|
Composable cycles. |
|
Concatenate |
The public API of cycler
consists of a class Cycler
, a
factory function cycler()
, and a concatenation function
concat()
. The factory function provides a simple interface for
creating ‘base’ Cycler
objects while the class takes care of the
composition and iteration logic.
Cycler
Usage¶
Base¶
A single entry Cycler
object can be used to easily cycle over a single style.
To create the Cycler
use the cycler()
function to link a
key/style/keyword argument to series of values. The key must be hashable (as it
will eventually be used as the key in a dict
).
In [1]: from __future__ import print_function
In [2]: from cycler import cycler
In [3]: color_cycle = cycler(color=['r', 'g', 'b'])
In [4]: color_cycle
Out[4]: cycler('color', ['r', 'g', 'b'])
The Cycler
knows its length and keys:
In [5]: len(color_cycle)
Out[5]: 3
In [6]: color_cycle.keys
Out[6]: {'color'}
Iterating over this object will yield a series of dict
objects keyed on
the label
In [7]: for v in color_cycle:
...: print(v)
...:
{'color': 'r'}
{'color': 'g'}
{'color': 'b'}
Cycler
objects can be passed as the argument to cycler()
which returns a new Cycler
with a new label, but the same values.
In [8]: cycler(ec=color_cycle)
Out[8]: cycler('ec', ['r', 'g', 'b'])
Iterating over a Cycler
results in the finite list of entries, to
get an infinite cycle, call the Cycler
object (a-la a generator)
In [9]: cc = color_cycle()
In [10]: for j, c in zip(range(5), cc):
....: print(j, c)
....:
0 {'color': 'r'}
1 {'color': 'g'}
2 {'color': 'b'}
3 {'color': 'r'}
4 {'color': 'g'}
Composition¶
A single Cycler
can just as easily be replaced by a single for
loop. The power of Cycler
objects is that they can be composed to easily
create complex multi-key cycles.
Addition¶
Equal length Cycler
s with different keys can be added to get the
‘inner’ product of two cycles
In [11]: lw_cycle = cycler(lw=range(1, 4))
In [12]: wc = lw_cycle + color_cycle
The result has the same length and has keys which are the union of the
two input Cycler
’s.
In [13]: len(wc)
Out[13]: 3
In [14]: wc.keys
Out[14]: {'color', 'lw'}
and iterating over the result is the zip of the two input cycles
In [15]: for s in wc:
....: print(s)
....:
{'lw': 1, 'color': 'r'}
{'lw': 2, 'color': 'g'}
{'lw': 3, 'color': 'b'}
As with arithmetic, addition is commutative
In [16]: lw_c = lw_cycle + color_cycle
In [17]: c_lw = color_cycle + lw_cycle
In [18]: for j, (a, b) in enumerate(zip(lw_c, c_lw)):
....: print('({j}) A: {A!r} B: {B!r}'.format(j=j, A=a, B=b))
....:
(0) A: {'lw': 1, 'color': 'r'} B: {'color': 'r', 'lw': 1}
(1) A: {'lw': 2, 'color': 'g'} B: {'color': 'g', 'lw': 2}
(2) A: {'lw': 3, 'color': 'b'} B: {'color': 'b', 'lw': 3}
For convenience, the cycler()
function can have multiple
key-value pairs and will automatically compose them into a single
Cycler
via addition
In [19]: wc = cycler(c=['r', 'g', 'b'], lw=range(3))
In [20]: for s in wc:
....: print(s)
....:
{'c': 'r', 'lw': 0}
{'c': 'g', 'lw': 1}
{'c': 'b', 'lw': 2}
Multiplication¶
Any pair of Cycler
can be multiplied
In [21]: m_cycle = cycler(marker=['s', 'o'])
In [22]: m_c = m_cycle * color_cycle
which gives the ‘outer product’ of the two cycles (same as
itertools.product()
)
In [23]: len(m_c)
Out[23]: 6
In [24]: m_c.keys
Out[24]: {'color', 'marker'}
In [25]: for s in m_c:
....: print(s)
....:
{'marker': 's', 'color': 'r'}
{'marker': 's', 'color': 'g'}
{'marker': 's', 'color': 'b'}
{'marker': 'o', 'color': 'r'}
{'marker': 'o', 'color': 'g'}
{'marker': 'o', 'color': 'b'}
Note that unlike addition, multiplication is not commutative (like matrices)
In [26]: c_m = color_cycle * m_cycle
In [27]: for j, (a, b) in enumerate(zip(c_m, m_c)):
....: print('({j}) A: {A!r} B: {B!r}'.format(j=j, A=a, B=b))
....:
(0) A: {'color': 'r', 'marker': 's'} B: {'marker': 's', 'color': 'r'}
(1) A: {'color': 'r', 'marker': 'o'} B: {'marker': 's', 'color': 'g'}
(2) A: {'color': 'g', 'marker': 's'} B: {'marker': 's', 'color': 'b'}
(3) A: {'color': 'g', 'marker': 'o'} B: {'marker': 'o', 'color': 'r'}
(4) A: {'color': 'b', 'marker': 's'} B: {'marker': 'o', 'color': 'g'}
(5) A: {'color': 'b', 'marker': 'o'} B: {'marker': 'o', 'color': 'b'}
Integer Multiplication¶
Cycler
s can also be multiplied by integer values to increase the length.
In [28]: color_cycle * 2
Out[28]: cycler('color', ['r', 'g', 'b', 'r', 'g', 'b'])
In [29]: 2 * color_cycle
Out[29]: cycler('color', ['r', 'g', 'b', 'r', 'g', 'b'])
Concatenation¶
Cycler
objects can be concatenated either via the Cycler.concat()
method
In [30]: color_cycle.concat(color_cycle)
Out[30]: cycler('color', ['r', 'g', 'b', 'r', 'g', 'b'])
or the top-level concat()
function
In [31]: from cycler import concat
In [32]: concat(color_cycle, color_cycle)
Out[32]: cycler('color', ['r', 'g', 'b', 'r', 'g', 'b'])
Slicing¶
Cycles can be sliced with slice
objects
In [33]: color_cycle[::-1]
Out[33]: cycler('color', ['b', 'g', 'r'])
In [34]: color_cycle[:2]
Out[34]: cycler('color', ['r', 'g'])
In [35]: color_cycle[1:]
Out[35]: cycler('color', ['g', 'b'])
to return a sub-set of the cycle as a new Cycler
.
Inspecting the Cycler
¶
To inspect the values of the transposed Cycler
use
the Cycler.by_key
method:
In [36]: c_m.by_key()
Out[36]:
{'marker': ['s', 'o', 's', 'o', 's', 'o'],
'color': ['r', 'r', 'g', 'g', 'b', 'b']}
This dict
can be mutated and used to create a new Cycler
with
the updated values
In [37]: bk = c_m.by_key()
In [38]: bk['color'] = ['green'] * len(c_m)
In [39]: cycler(**bk)
Out[39]: (cycler('marker', ['s', 'o', 's', 'o', 's', 'o']) + cycler('color', ['green', 'green', 'green', 'green', 'green', 'green']))
Examples¶
We can use Cycler
instances to cycle over one or more kwarg
to
plot
:
from cycler import cycler
from itertools import cycle
fig, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True,
figsize=(8, 4))
x = np.arange(10)
color_cycle = cycler(c=['r', 'g', 'b'])
for i, sty in enumerate(color_cycle):
ax1.plot(x, x*(i+1), **sty)
for i, sty in zip(range(1, 5), cycle(color_cycle)):
ax2.plot(x, x*i, **sty)
(Source code
, png
, hires.png
, pdf
)
from cycler import cycler
from itertools import cycle
fig, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True,
figsize=(8, 4))
x = np.arange(10)
color_cycle = cycler(c=['r', 'g', 'b'])
ls_cycle = cycler('ls', ['-', '--'])
lw_cycle = cycler('lw', range(1, 4))
sty_cycle = ls_cycle * (color_cycle + lw_cycle)
for i, sty in enumerate(sty_cycle):
ax1.plot(x, x*(i+1), **sty)
sty_cycle = (color_cycle + lw_cycle) * ls_cycle
for i, sty in enumerate(sty_cycle):
ax2.plot(x, x*(i+1), **sty)
(Source code
, png
, hires.png
, pdf
)
Persistent Cycles¶
It can be useful to associate a given label with a style via
dictionary lookup and to dynamically generate that mapping. This
can easily be accomplished using a defaultdict
In [40]: from cycler import cycler as cy
In [41]: from collections import defaultdict
In [42]: cyl = cy('c', 'rgb') + cy('lw', range(1, 4))
To get a finite set of styles
In [43]: finite_cy_iter = iter(cyl)
In [44]: dd_finite = defaultdict(lambda : next(finite_cy_iter))
or repeating
In [45]: loop_cy_iter = cyl()
In [46]: dd_loop = defaultdict(lambda : next(loop_cy_iter))
This can be helpful when plotting complex data which has both a classification and a label
finite_cy_iter = iter(cyl)
styles = defaultdict(lambda : next(finite_cy_iter))
for group, label, data in DataSet:
ax.plot(data, label=label, **styles[group])
which will result in every data
with the same group
being plotted with
the same style.
Exceptions¶
A ValueError
is raised if unequal length Cycler
s are added together
In [47]: cycler(c=['r', 'g', 'b']) + cycler(ls=['-', '--'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[47], line 1
----> 1 cycler(c=['r', 'g', 'b']) + cycler(ls=['-', '--'])
File ~/code/cycler/venv/lib64/python3.12/site-packages/cycler/__init__.py:283, in Cycler.__add__(self, other)
275 """
276 Pair-wise combine two equal length cyclers (zip).
277
(...)
280 other : Cycler
281 """
282 if len(self) != len(other):
--> 283 raise ValueError(
284 f"Can only add equal length cycles, not {len(self)} and {len(other)}"
285 )
286 return Cycler(
287 cast(Cycler[Union[K, L], Union[V, U]], self),
288 cast(Cycler[Union[K, L], Union[V, U]], other),
289 zip
290 )
ValueError: Can only add equal length cycles, not 3 and 2
or if two cycles which have overlapping keys are composed
In [48]: color_cycle = cycler(c=['r', 'g', 'b'])
In [49]: color_cycle + color_cycle
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[49], line 1
----> 1 color_cycle + color_cycle
File ~/code/cycler/venv/lib64/python3.12/site-packages/cycler/__init__.py:286, in Cycler.__add__(self, other)
282 if len(self) != len(other):
283 raise ValueError(
284 f"Can only add equal length cycles, not {len(self)} and {len(other)}"
285 )
--> 286 return Cycler(
287 cast(Cycler[Union[K, L], Union[V, U]], self),
288 cast(Cycler[Union[K, L], Union[V, U]], other),
289 zip
290 )
File ~/code/cycler/venv/lib64/python3.12/site-packages/cycler/__init__.py:179, in Cycler.__init__(self, left, right, op)
176 else:
177 self._right = None
--> 179 self._keys: set[K] = _process_keys(self._left, self._right)
180 self._op: Any = op
File ~/code/cycler/venv/lib64/python3.12/site-packages/cycler/__init__.py:84, in _process_keys(left, right)
82 r_key: set[K] = set(r_peek.keys())
83 if l_key & r_key:
---> 84 raise ValueError("Can not compose overlapping cycles")
85 return l_key | r_key
ValueError: Can not compose overlapping cycles
Motivation¶
When plotting more than one line it is common to want to be able to cycle over one or more artist styles. For simple cases than can be done with out too much trouble:
fig, ax = plt.subplots(tight_layout=True)
x = np.linspace(0, 2*np.pi, 1024)
for i, (lw, c) in enumerate(zip(range(4), ['r', 'g', 'b', 'k'])):
ax.plot(x, np.sin(x - i * np.pi / 4),
label=r'$\phi = {{{0}}} \pi / 4$'.format(i),
lw=lw + 1,
c=c)
ax.set_xlim([0, 2*np.pi])
ax.set_title(r'$y=\sin(\theta + \phi)$')
ax.set_ylabel(r'[arb]')
ax.set_xlabel(r'$\theta$ [rad]')
ax.legend(loc=0)
(Source code
, png
, hires.png
, pdf
)
However, if you want to do something more complicated:
fig, ax = plt.subplots(tight_layout=True)
x = np.linspace(0, 2*np.pi, 1024)
for i, (lw, c) in enumerate(zip(range(4), ['r', 'g', 'b', 'k'])):
if i % 2:
ls = '-'
else:
ls = '--'
ax.plot(x, np.sin(x - i * np.pi / 4),
label=r'$\phi = {{{0}}} \pi / 4$'.format(i),
lw=lw + 1,
c=c,
ls=ls)
ax.set_xlim([0, 2*np.pi])
ax.set_title(r'$y=\sin(\theta + \phi)$')
ax.set_ylabel(r'[arb]')
ax.set_xlabel(r'$\theta$ [rad]')
ax.legend(loc=0)
(Source code
, png
, hires.png
, pdf
)
the plotting logic can quickly become very involved. To address this and allow
easy cycling over arbitrary kwargs
the Cycler
class, a composable keyword
argument iterator, was developed.