Matplotlib for intermediate users

A matplotlib figure is composed of a hierarchy of elements that forms the actual figure. Each element can be modified.

Anatomy of a figure

- **Figure**: The top-level container.
- **Axes**: The figure's main working area.
- **Spines**: The lines that form the borders of the axes.

Figure, axes & spines

```python
fig, axs = plt.subplots(3, 3)
axs[0, 0].set_facecolor("#ddddff")
axs[2, 2].set_facecolor("#ffffdd")
```

Ticks & labels

```python
from mpl.ticker import MultipleLocator as ML
from mpl.ticker import ScalarFormatter as SF
ax.xaxis.set_minor_locator(ML(0.2))
ax.xaxis.set_minor_formatter(SF())
ax.tick_params(axis='x', which='minor', rotation=90)
```

Lines & markers

```python
X = np.linspace(0.1, 10*np.pi, 1000)
Y = np.sin(X)
ax.plot(X, Y, "C1o:", markevery=25, mec="1.0")
```

Scales & projections

```python
fig, ax = plt.subplots()
ax.set_xscale("log")
ax.plot(X, Y, "C1o-", markevery=25, mec="1.0")
```

Text & ornaments

```python
ax.fill_betweenx([-1,1],[0],[2*np.pi])
ax.text(0, -1, r"Period $\Phi$")
```

Legend

```python
ax.plot(X, np.sin(X), "C0", label="Sine")
ax.plot(X, np.cos(X), "C1", label="Cosine")
ax.legend(bbox_to_anchor=(0,1.1,.1),ncol=2,
         mode="expand", loc="lower left")
```

Annotation

```python
ax.annotate("A", (X[250],Y[250]),(X[250],-1),
           ha="center", va="center",arrowprops =
           {"arrowstyle" : "->", "color": "C1"})
```

Colors

Any color can be used, but Matplotlib offers sets of colors:

<table>
<thead>
<tr>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Size & DPI

Consider a square figure to be included in a two-columns A4 paper with 2cm margins on each side and a column separation of 1cm. The width of a figure is (21 - 2*2 - 1)/2 = 8cm. One inch being 2.54cm, figure size should be 3.15\times3.15 in.

```python
fig = plt.figure(figsize=(3.15,3.15), dpi=50)
plt.savefig("figure.pdf", dpi=600)
```

Matplotlib 3.6.3 handout for intermediate users. Copyright (c) 2021 Matplotlib Development Team. Released under a CC-BY 4.0 International License. Supported by NumFOCUS.