# axis3d.py, original mplot3d version by John Porter
# Created: 23 Sep 2005
# Parts rewritten by Reinier Heeres <[email protected]>
import numpy as np
import matplotlib.transforms as mtransforms
from matplotlib import (
artist, lines as mlines, axis as maxis, patches as mpatches, rcParams)
from . import art3d, proj3d
def move_from_center(coord, centers, deltas, axmask=(True, True, True)):
"""
For each coordinate where *axmask* is True, move *coord* away from
*centers* by *deltas*.
"""
coord = np.asarray(coord)
return coord + axmask * np.copysign(1, coord - centers) * deltas
def tick_update_position(tick, tickxs, tickys, labelpos):
"""Update tick line and label position and style."""
tick.label1.set_position(labelpos)
tick.label2.set_position(labelpos)
tick.tick1line.set_visible(True)
tick.tick2line.set_visible(False)
tick.tick1line.set_linestyle('-')
tick.tick1line.set_marker('')
tick.tick1line.set_data(tickxs, tickys)
tick.gridline.set_data(0, 0)
[docs]class Axis(maxis.XAxis):
"""An Axis class for the 3D plots."""
# These points from the unit cube make up the x, y and z-planes
_PLANES = (
(0, 3, 7, 4), (1, 2, 6, 5), # yz planes
(0, 1, 5, 4), (3, 2, 6, 7), # xz planes
(0, 1, 2, 3), (4, 5, 6, 7), # xy planes
)
# Some properties for the axes
_AXINFO = {
'x': {'i': 0, 'tickdir': 1, 'juggled': (1, 0, 2),
'color': (0.95, 0.95, 0.95, 0.5)},
'y': {'i': 1, 'tickdir': 0, 'juggled': (0, 1, 2),
'color': (0.90, 0.90, 0.90, 0.5)},
'z': {'i': 2, 'tickdir': 0, 'juggled': (0, 2, 1),
'color': (0.925, 0.925, 0.925, 0.5)},
}
[docs] def __init__(self, adir, v_intervalx, d_intervalx, axes, *args,
rotate_label=None, **kwargs):
# adir identifies which axes this is
self.adir = adir
# This is a temporary member variable.
# Do not depend on this existing in future releases!
self._axinfo = self._AXINFO[adir].copy()
if rcParams['_internal.classic_mode']:
self._axinfo.update({
'label': {'va': 'center', 'ha': 'center'},
'tick': {
'inward_factor': 0.2,
'outward_factor': 0.1,
'linewidth': {
True: rcParams['lines.linewidth'], # major
False: rcParams['lines.linewidth'], # minor
}
},
'axisline': {'linewidth': 0.75, 'color': (0, 0, 0, 1)},
'grid': {
'color': (0.9, 0.9, 0.9, 1),
'linewidth': 1.0,
'linestyle': '-',
},
})
else:
self._axinfo.update({
'label': {'va': 'center', 'ha': 'center'},
'tick': {
'inward_factor': 0.2,
'outward_factor': 0.1,
'linewidth': {
True: ( # major
rcParams['xtick.major.width'] if adir in 'xz' else
rcParams['ytick.major.width']),
False: ( # minor
rcParams['xtick.minor.width'] if adir in 'xz' else
rcParams['ytick.minor.width']),
}
},
'axisline': {
'linewidth': rcParams['axes.linewidth'],
'color': rcParams['axes.edgecolor'],
},
'grid': {
'color': rcParams['grid.color'],
'linewidth': rcParams['grid.linewidth'],
'linestyle': rcParams['grid.linestyle'],
},
})
super().__init__(axes, *args, **kwargs)
# data and viewing intervals for this direction
self.d_interval = d_intervalx
self.v_interval = v_intervalx
self.set_rotate_label(rotate_label)
[docs] def init3d(self):
self.line = mlines.Line2D(
xdata=(0, 0), ydata=(0, 0),
linewidth=self._axinfo['axisline']['linewidth'],
color=self._axinfo['axisline']['color'],
antialiased=True)
# Store dummy data in Polygon object
self.pane = mpatches.Polygon(
np.array([[0, 0], [0, 1], [1, 0], [0, 0]]),
closed=False, alpha=0.8, facecolor='k', edgecolor='k')
self.set_pane_color(self._axinfo['color'])
self.axes._set_artist_props(self.line)
self.axes._set_artist_props(self.pane)
self.gridlines = art3d.Line3DCollection([])
self.axes._set_artist_props(self.gridlines)
self.axes._set_artist_props(self.label)
self.axes._set_artist_props(self.offsetText)
# Need to be able to place the label at the correct location
self.label._transform = self.axes.transData
self.offsetText._transform = self.axes.transData
[docs] def get_major_ticks(self, numticks=None):
ticks = super().get_major_ticks(numticks)
for t in ticks:
for obj in [
t.tick1line, t.tick2line, t.gridline, t.label1, t.label2]:
obj.set_transform(self.axes.transData)
return ticks
[docs] def get_minor_ticks(self, numticks=None):
ticks = super().get_minor_ticks(numticks)
for t in ticks:
for obj in [
t.tick1line, t.tick2line, t.gridline, t.label1, t.label2]:
obj.set_transform(self.axes.transData)
return ticks
[docs] def set_pane_pos(self, xys):
xys = np.asarray(xys)
xys = xys[:, :2]
self.pane.xy = xys
self.stale = True
[docs] def set_pane_color(self, color):
"""Set pane color to a RGBA tuple."""
self._axinfo['color'] = color
self.pane.set_edgecolor(color)
self.pane.set_facecolor(color)
self.pane.set_alpha(color[-1])
self.stale = True
[docs] def set_rotate_label(self, val):
"""
Whether to rotate the axis label: True, False or None.
If set to None the label will be rotated if longer than 4 chars.
"""
self._rotate_label = val
self.stale = True
[docs] def get_rotate_label(self, text):
if self._rotate_label is not None:
return self._rotate_label
else:
return len(text) > 4
def _get_coord_info(self, renderer):
mins, maxs = np.array([
self.axes.get_xbound(),
self.axes.get_ybound(),
self.axes.get_zbound(),
]).T
centers = (maxs + mins) / 2.
deltas = (maxs - mins) / 12.
mins = mins - deltas / 4.
maxs = maxs + deltas / 4.
vals = mins[0], maxs[0], mins[1], maxs[1], mins[2], maxs[2]
tc = self.axes.tunit_cube(vals, self.axes.M)
avgz = [tc[p1][2] + tc[p2][2] + tc[p3][2] + tc[p4][2]
for p1, p2, p3, p4 in self._PLANES]
highs = np.array([avgz[2*i] < avgz[2*i+1] for i in range(3)])
return mins, maxs, centers, deltas, tc, highs
[docs] def draw_pane(self, renderer):
renderer.open_group('pane3d', gid=self.get_gid())
mins, maxs, centers, deltas, tc, highs = self._get_coord_info(renderer)
info = self._axinfo
index = info['i']
if not highs[index]:
plane = self._PLANES[2 * index]
else:
plane = self._PLANES[2 * index + 1]
xys = [tc[p] for p in plane]
self.set_pane_pos(xys)
self.pane.draw(renderer)
renderer.close_group('pane3d')
[docs] @artist.allow_rasterization
def draw(self, renderer):
self.label._transform = self.axes.transData
renderer.open_group('axis3d', gid=self.get_gid())
ticks = self._update_ticks()
info = self._axinfo
index = info['i']
mins, maxs, centers, deltas, tc, highs = self._get_coord_info(renderer)
# Determine grid lines
minmax = np.where(highs, maxs, mins)
maxmin = np.where(highs, mins, maxs)
# Draw main axis line
juggled = info['juggled']
edgep1 = minmax.copy()
edgep1[juggled[0]] = maxmin[juggled[0]]
edgep2 = edgep1.copy()
edgep2[juggled[1]] = maxmin[juggled[1]]
pep = np.asarray(
proj3d.proj_trans_points([edgep1, edgep2], self.axes.M))
centpt = proj3d.proj_transform(*centers, self.axes.M)
self.line.set_data(pep[0], pep[1])
self.line.draw(renderer)
# Grid points where the planes meet
xyz0 = np.tile(minmax, (len(ticks), 1))
xyz0[:, index] = [tick.get_loc() for tick in ticks]
# Draw labels
# The transAxes transform is used because the Text object
# rotates the text relative to the display coordinate system.
# Therefore, if we want the labels to remain parallel to the
# axis regardless of the aspect ratio, we need to convert the
# edge points of the plane to display coordinates and calculate
# an angle from that.
# TODO: Maybe Text objects should handle this themselves?
dx, dy = (self.axes.transAxes.transform([pep[0:2, 1]]) -
self.axes.transAxes.transform([pep[0:2, 0]]))[0]
lxyz = 0.5 * (edgep1 + edgep2)
# A rough estimate; points are ambiguous since 3D plots rotate
reltoinches = self.figure.dpi_scale_trans.inverted()
ax_inches = reltoinches.transform(self.axes.bbox.size)
ax_points_estimate = sum(72. * ax_inches)
deltas_per_point = 48 / ax_points_estimate
default_offset = 21.
labeldeltas = (
(self.labelpad + default_offset) * deltas_per_point * deltas)
axmask = [True, True, True]
axmask[index] = False
lxyz = move_from_center(lxyz, centers, labeldeltas, axmask)
tlx, tly, tlz = proj3d.proj_transform(*lxyz, self.axes.M)
self.label.set_position((tlx, tly))
if self.get_rotate_label(self.label.get_text()):
angle = art3d._norm_text_angle(np.rad2deg(np.arctan2(dy, dx)))
self.label.set_rotation(angle)
self.label.set_va(info['label']['va'])
self.label.set_ha(info['label']['ha'])
self.label.draw(renderer)
# Draw Offset text
# Which of the two edge points do we want to
# use for locating the offset text?
if juggled[2] == 2:
outeredgep = edgep1
outerindex = 0
else:
outeredgep = edgep2
outerindex = 1
pos = move_from_center(outeredgep, centers, labeldeltas, axmask)
olx, oly, olz = proj3d.proj_transform(*pos, self.axes.M)
self.offsetText.set_text(self.major.formatter.get_offset())
self.offsetText.set_position((olx, oly))
angle = art3d._norm_text_angle(np.rad2deg(np.arctan2(dy, dx)))
self.offsetText.set_rotation(angle)
# Must set rotation mode to "anchor" so that
# the alignment point is used as the "fulcrum" for rotation.
self.offsetText.set_rotation_mode('anchor')
#----------------------------------------------------------------------
# Note: the following statement for determining the proper alignment of
# the offset text. This was determined entirely by trial-and-error
# and should not be in any way considered as "the way". There are
# still some edge cases where alignment is not quite right, but this
# seems to be more of a geometry issue (in other words, I might be
# using the wrong reference points).
#
# (TT, FF, TF, FT) are the shorthand for the tuple of
# (centpt[info['tickdir']] <= pep[info['tickdir'], outerindex],
# centpt[index] <= pep[index, outerindex])
#
# Three-letters (e.g., TFT, FTT) are short-hand for the array of bools
# from the variable 'highs'.
# ---------------------------------------------------------------------
if centpt[info['tickdir']] > pep[info['tickdir'], outerindex]:
# if FT and if highs has an even number of Trues
if (centpt[index] <= pep[index, outerindex]
and np.count_nonzero(highs) % 2 == 0):
# Usually, this means align right, except for the FTT case,
# in which offset for axis 1 and 2 are aligned left.
if highs.tolist() == [False, True, True] and index in (1, 2):
align = 'left'
else:
align = 'right'
else:
# The FF case
align = 'left'
else:
# if TF and if highs has an even number of Trues
if (centpt[index] > pep[index, outerindex]
and np.count_nonzero(highs) % 2 == 0):
# Usually mean align left, except if it is axis 2
if index == 2:
align = 'right'
else:
align = 'left'
else:
# The TT case
align = 'right'
self.offsetText.set_va('center')
self.offsetText.set_ha(align)
self.offsetText.draw(renderer)
if self.axes._draw_grid and len(ticks):
# Grid lines go from the end of one plane through the plane
# intersection (at xyz0) to the end of the other plane. The first
# point (0) differs along dimension index-2 and the last (2) along
# dimension index-1.
lines = np.stack([xyz0, xyz0, xyz0], axis=1)
lines[:, 0, index - 2] = maxmin[index - 2]
lines[:, 2, index - 1] = maxmin[index - 1]
self.gridlines.set_segments(lines)
self.gridlines.set_color(info['grid']['color'])
self.gridlines.set_linewidth(info['grid']['linewidth'])
self.gridlines.set_linestyle(info['grid']['linestyle'])
self.gridlines.do_3d_projection()
self.gridlines.draw(renderer)
# Draw ticks
tickdir = info['tickdir']
tickdelta = deltas[tickdir]
if highs[tickdir]:
ticksign = 1
else:
ticksign = -1
for tick in ticks:
# Get tick line positions
pos = edgep1.copy()
pos[index] = tick.get_loc()
pos[tickdir] = (
edgep1[tickdir]
+ info['tick']['outward_factor'] * ticksign * tickdelta)
x1, y1, z1 = proj3d.proj_transform(*pos, self.axes.M)
pos[tickdir] = (
edgep1[tickdir]
- info['tick']['inward_factor'] * ticksign * tickdelta)
x2, y2, z2 = proj3d.proj_transform(*pos, self.axes.M)
# Get position of label
default_offset = 8. # A rough estimate
labeldeltas = (
(tick.get_pad() + default_offset) * deltas_per_point * deltas)
axmask = [True, True, True]
axmask[index] = False
pos[tickdir] = edgep1[tickdir]
pos = move_from_center(pos, centers, labeldeltas, axmask)
lx, ly, lz = proj3d.proj_transform(*pos, self.axes.M)
tick_update_position(tick, (x1, x2), (y1, y2), (lx, ly))
tick.tick1line.set_linewidth(
info['tick']['linewidth'][tick._major])
tick.draw(renderer)
renderer.close_group('axis3d')
self.stale = False
# TODO: Get this to work (more) properly when mplot3d supports the
# transforms framework.
[docs] def get_tightbbox(self, renderer, *, for_layout_only=False):
# inherited docstring
if not self.get_visible():
return
# We have to directly access the internal data structures
# (and hope they are up to date) because at draw time we
# shift the ticks and their labels around in (x, y) space
# based on the projection, the current view port, and their
# position in 3D space. If we extend the transforms framework
# into 3D we would not need to do this different book keeping
# than we do in the normal axis
major_locs = self.get_majorticklocs()
minor_locs = self.get_minorticklocs()
ticks = [*self.get_minor_ticks(len(minor_locs)),
*self.get_major_ticks(len(major_locs))]
view_low, view_high = self.get_view_interval()
if view_low > view_high:
view_low, view_high = view_high, view_low
interval_t = self.get_transform().transform([view_low, view_high])
ticks_to_draw = []
for tick in ticks:
try:
loc_t = self.get_transform().transform(tick.get_loc())
except AssertionError:
# Transform.transform doesn't allow masked values but
# some scales might make them, so we need this try/except.
pass
else:
if mtransforms._interval_contains_close(interval_t, loc_t):
ticks_to_draw.append(tick)
ticks = ticks_to_draw
bb_1, bb_2 = self._get_tick_bboxes(ticks, renderer)
other = []
if self.line.get_visible():
other.append(self.line.get_window_extent(renderer))
if (self.label.get_visible() and not for_layout_only and
self.label.get_text()):
other.append(self.label.get_window_extent(renderer))
return mtransforms.Bbox.union([*bb_1, *bb_2, *other])
@property
def d_interval(self):
return self.get_data_interval()
@d_interval.setter
def d_interval(self, minmax):
self.set_data_interval(*minmax)
@property
def v_interval(self):
return self.get_view_interval()
@v_interval.setter
def v_interval(self, minmax):
self.set_view_interval(*minmax)
# Use classes to look at different data limits
class XAxis(Axis):
get_view_interval, set_view_interval = maxis._make_getset_interval(
"view", "xy_viewLim", "intervalx")
get_data_interval, set_data_interval = maxis._make_getset_interval(
"data", "xy_dataLim", "intervalx")
class YAxis(Axis):
get_view_interval, set_view_interval = maxis._make_getset_interval(
"view", "xy_viewLim", "intervaly")
get_data_interval, set_data_interval = maxis._make_getset_interval(
"data", "xy_dataLim", "intervaly")
class ZAxis(Axis):
get_view_interval, set_view_interval = maxis._make_getset_interval(
"view", "zz_viewLim", "intervalx")
get_data_interval, set_data_interval = maxis._make_getset_interval(
"data", "zz_dataLim", "intervalx")