Matplotlib
Release 3.3.4

John Hunter

Darren Dale

Eric Firing

Michael Droettboom

and the matplotlib development team

January 28, 2021

CONTENTS

I User's Guide 1
1 Installation Guide 3
2 Tutorials 9
3 Interactive Figures 409
4 What's new? 433
5 What's new in Matplotlib 3.3.0 435
6 History 457
7 GitHub Stats 459
8 Previous What's New 641
9 License 879
10Citing Matplotlib 883
11 Credits 887
I The Matplotlib FAQ 893
12Installation 895
13 How-to 899
14 Troubleshooting 913
15 Environment Variables 917
IIT API Overview 919

16 API Changes 921

17 Usage patterns
18 Modules

19 Toolkits

IV External Resources
20Books, Chapters and Articles
21Videos

22 Tutorials

V Third party packages
23 Mapping toolkits

24 Declarative libraries

25 Specialty plots

26 Animations

27 Interactivity

28 Rendering backends

29 Miscellaneous

30GUI applications

VI The Matplotlib Developers' Guide

31 Contributing
32 Developer's tips for testing

33 Writing documentation

34 Developer's guide for creating scales and transformations

35 Working with Matplotlib source code

36 Pull request guidelines

37 Release Guide

38 Minimum Version of Dependencies Policy

1109
1111
2849

3083
3085
3087
3089

3091
3095
3099
3103
3111
3113
3115
3117
3123

3125
3127
3139
3145
3167
3171
3193
3201
3209

39 Matplotlib Enhancement Proposals
40Licenses

41 Default Color changes

VII Glossary
Bibliography
Python Module Index

Index

3213
3285
3287

3291
3295
3297
3299

Part 1

User's Guide

CHAPTER
ONE

INSTALLATION GUIDE

Note: If you wish to contribute to the project, it's recommended you install the latest
development version.

Contents

* Installation Guide
- Installing an official release
* Test data
- Third-party distributions of Matplotlib
* Scientific Python Distributions
* Linux: using your package manager
- Installing from source
* Dependencies
* FreeType and Qhull

* Building on Windows

* Conda packages

1.1 Installing an official release

Matplotlib and its dependencies are available as wheel packages for macOS, Windows
and Linux distributions:

python -m pip install -U pip
python -m pip install -U matplotlib

Matplotlib, Release 3.3.4

If this command results in Matplotlib being compiled from source and there's trouble
with the compilation, you can add --prefer-binary to select the newest version of
Matplotlib for which there is a precompiled wheel for your OS and Python.

Note: The following backends work out of the box: Agg, ps, pdf, svg
Python is typically shipped with tk bindings which are used by TkAgg.

For support of other GUI frameworks, LaTeX rendering, saving animations and a
larger selection of file formats, you need to install additional dependencies.

Although not required, we suggest also installing IPython for interactive use. To easily
install a complete Scientific Python stack, see Scientific Python Distributions below.

1.1.1 Test data

The wheels (*.whl) on the PyPI download page do not contain test data or example
code.

If you want to try the many demos that come in the Matplotlib source distribution,
download the *.tar.gz file and look in the examples subdirectory.

To run the test suite:

* extract the lib/matplotlib/tests Or lib/mpl_toolkits/tests directories from the
source distribution.

* install test dependencies: pytest, MiKTeX, GhostScript, ffmpeg, avconv, Im-
ageMagick, and Inkscape.

®* run python -mpytest.

1.2 Third-party distributions of Matplotlib

1.2.1 Scientific Python Distributions

Anaconda and ActiveState are excellent choices that "just work" out of the box for
Windows, macOS and common Linux platforms. WinPython is an option for Windows
users. All of these distributions include Matplotlib and lots of other useful (data)
science tools.

4 Chapter 1. Installation Guide

https://pypi.org/project/matplotlib/
https://pypi.org/project/pytest
https://inkscape.org/
https://www.anaconda.com/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/

Matplotlib, Release 3.3.4

1.2.2 Linux: using your package manager

If you are on Linux, you might prefer to use your package manager. Matplotlib is
packaged for almost every major Linux distribution.

* Debian / Ubuntu: sudo apt-get install python3-matplotlib
* Fedora: sudo dnf install python3-matplotlib
* Red Hat: sudo yum install python3-matplotlib

* Arch: sudo pacman -S python-matplotlib

1.3 Installing from source

If you are interested in contributing to Matplotlib development, running the latest
source code, or just like to build everything yourself, it is not difficult to build Mat-
plotlib from source. Grab the latest tar.gz release file from the PyPI files page, or
if you want to develop Matplotlib or just need the latest bugfixed version, grab the
latest git version, and see Install from source.

Matplotlib can be installed from the source directory with a simple

python -m pip install .

We provide a setup.cfg file which you can use to customize the build process. For
example, which default backend to use, whether some of the optional libraries that
Matplotlib ships with are installed, and so on. This file will be particularly useful to
those packaging Matplotlib.

1.3.1 Dependencies

Matplotlib requires the following dependencies:
* Python (>= 3.6)
e NumPy (>= 1.15)
* setuptools
* cycler (>=0.10.0)
e dateutil (>= 2.1)
e kiwisolver (>= 1.0.0)
e Pillow (>=6.2)
* pyparsing (>=2.0.3)

1.3. Installing from source 5

https://pypi.org/project/matplotlib/
https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://www.python.org/downloads/
https://numpy.org
https://setuptools.readthedocs.io/en/latest/
https://matplotlib.org/cycler/
https://pypi.org/project/python-dateutil
https://github.com/nucleic/kiwi
https://pillow.readthedocs.io/en/latest/
https://pypi.org/project/pyparsing/

Matplotlib, Release 3.3.4

Optionally, you can also install a number of packages to enable better user interface
toolkits. See What is a backend? for more details on the optional Matplotlib backends
and the capabilities they provide.

e Tk (>= 8.3, '=8.6.0 or 8.6.1): for the Tk-based backends.

PyQt4 (>= 4.6) or PySide (>= 1.0.3)!: for the Qt4-based backends.
PyQt5 or PySide2: for the Qt5-based backends.

PyGObject: for the GTK3-based backends?.

wxPython (>= 4)°: for the wx-based backends.

* pycairo (>= 1.11.0) or cairocffi (>= 0.8): for the GTK3 and/or cairo-based back-
ends.

* Tornado: for the WebAgg backend.

For better support of animation output format and image file formats, LaTeX, etc.,
you can install the following:

» ffmpegq: for saving movies.
* ImageMagick: for saving animated gifs.
* LaTeX (with cm-super) and GhostScript (>=9.0) : for rendering text with LaTeX.

» fontconfig (>= 2.7): for detection of system fonts on Linux.

1.3.2 FreeType and Qhull

Matplotlib depends on FreeType (>= 2.3), a font rendering library, and on Qhull (>=
2015.2), a library for computing triangulations. By default (except on AIX) Matplotlib
downloads and builds its own copy of FreeType (this is necessary to run the test suite,
because different versions of FreeType rasterize characters differently), and uses its
own copy of Qhull.

To force Matplotlib to use a copy of FreeType or Qhull already installed in your system,
create a setup.cfg file with the following contents:

[1ibs]
system_freetype = true
system_qghull = true

before running python -m pip install ..

In this case, you need to install the FreeType and Qhull library and headers. This can
be achieved using a package manager, e.g. for FreeType:

! PySide cannot be pip-installed on Linux (but can be conda-installed).

2 If using pip (and not conda), PyGObject must be built from source; see https://pygobject.
readthedocs.io/en/latest/devguide/dev environ.html.

3 If using pip (and not conda) on Linux, wxPython wheels must be manually downloaded from https:
/Iwxpython.org/pages/downloads/.

6 Chapter 1. Installation Guide

https://docs.python.org/3/library/tk.html
https://pypi.org/project/PyQt4
https://pypi.org/project/PySide
https://pypi.org/project/PyQt5
https://pypi.org/project/PySide2
https://pygobject.readthedocs.io/en/latest/
https://www.wxpython.org/
https://pycairo.readthedocs.io/en/latest/
https://cairocffi.readthedocs.io/en/latest/
https://pypi.org/project/tornado
https://www.ffmpeg.org/
https://www.imagemagick.org/script/index.php
https://www.latex-project.org/
https://ctan.org/pkg/cm-super
https://ghostscript.com/download/
https://www.fontconfig.org
https://www.freetype.org/
http://www.qhull.org/
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://wxpython.org/pages/downloads/
https://wxpython.org/pages/downloads/

Matplotlib, Release 3.3.4

Pick ONE of the following:

sudo apt install libfreetype6-dev # Debian/Ubuntu
sudo dnf install freetype-devel # Fedora

brew install freetype # macOS with Homebrew
conda install freetype # conda, any 0S

(adapt accordingly for Qhull).

On Linux and macOS, it is also recommended to install pkg-config, a helper tool for
locating FreeType:

Pick ONE of the following:

sudo apt install pkg-config # Debian/Ubuntu

sudo dnf install pkgconf # Fedora

brew install pkg-config # macOS with Homebrew

conda install pkg-config # conda

Or point the PKG_CONFIG environment variable to the path to pkg-config:
export PKG_CONFIG=...

If not using pkg-config (in particular on Windows), you may need to set the include
path (to the library headers) and link path (to the libraries) explicitly, if they are not
in standard locations. This can be done using standard environment variables -- on
Linux and OSX:

export CFLAGS='-I/directory/containing/ft2build.h'
export LDFLAGS='-L/directory/containing/libfreetype.so'

and on Windows:

set CL=/IC:\directory\containing\ft2build.h
set LINK=/LIBPATH:C:\directory\containing\freetype.lib

Note: Matplotlib always uses its own copies of the following libraries:
* Agg: the Anti-Grain Geometry C++ rendering engine;

* ttconv: a TrueType font utility.

1.3.3 Building on Windows
Compiling Matplotlib (or any other extension module, for that matter) requires Visual
Studio 2015 or later.

If you are building your own Matplotlib wheels (or sdists), note that any DLLs that
you copy into the source tree will be packaged too.

1.3. Installing from source 7

https://www.freedesktop.org/wiki/Software/pkg-config/

Matplotlib, Release 3.3.4

1.3.4 Conda packages

The conda packaging scripts for Matplotlib are available at https://github.com/
conda-forge/matplotlib-feedstock.

8 Chapter 1. Installation Guide

https://github.com/conda-forge/matplotlib-feedstock
https://github.com/conda-forge/matplotlib-feedstock

CHAPTER
TWO

TUTORIALS

This page contains more in-depth guides for using Matplotlib. It is broken up into
beginner, intermediate, and advanced sections, as well as sections covering specific
topics.

For shorter examples, see our examples page. You can also find external resources
and a FAQ in our user guide.

2.1 Introductory

These tutorials cover the basics of creating visualizations with Matplotlib, as well as
some best-practices in using the package effectively.

2.1.1 Usage Guide

This tutorial covers some basic usage patterns and best-practices to help you get
started with Matplotlib.

import matplotlib.pyplot as plt
import numpy as np

A simple example

Matplotlib graphs your data on Figures (i.e., windows, Jupyter widgets, etc.), each of
which can contain one or more 4zes (i.e., an area where points can be specified in
terms of x-y coordinates (or theta-r in a polar plot, or x-y-z in a 3D plot, etc.). The
most simple way of creating a figure with an axes is using pyplot.subplots. We can
then use Azes.plot to draw some data on the axes:

fig, ax = plt.subplots() # Create a figure containing a single azes.
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the azes.

../gallery/index.html
../resources/index.html
../faq/index.html
../contents.html

Matplotlib, Release 3.3.4

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at O0x7fcbelad43a0>]

Many other plotting libraries or languages do not require you to explicitly create an
axes. For example, in MATLAB, one can just do

plot([1, 2, 3, 41, [1, 4, 2, 31) /7 MATLAB plot.

and get the desired graph.

In fact, you can do the same in Matplotlib: for each 4Azes graphing method, there is
a corresponding function in the matplotiib.pyplot module that performs that plot on
the "current" axes, creating that axes (and its parent figure) if they don't exist yet.
So the previous example can be written more shortly as

plt.plot([1, 2, 3, 41, [1, 4, 2, 3]) # Matplotlib plot.

10 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7fcbel5c9be0>]

Parts of a Figure

Now, let's have a deeper look at the components of a Matplotlib figure.

2.1. Introductory 11

Matplotlib, Release 3.3.4

@ Ana1y of a figure

Major tick

D

Minor tick

Major tick label

3 label

Y axis labe

Spines

Figure

Line
- Axes (line plot)

T T T
2.25 2.50 2.75

T
3.25 3.50 3.75

(=]

a
s label

0 T | i | T T
0.2 275 ¢ 125 150 1-=

Minor tick label Made with http://matplotlib.org
X axis label

Figure

The whole figure. The figure keeps track of all the child 4zes, a smattering of 'special’
artists (titles, figure legends, etc), and the canvas. (Don't worry too much about the
canvas, it is crucial as it is the object that actually does the drawing to get you your
plot, but as the user it is more-or-less invisible to you). A figure can contain any
number of Azes, but will typically have at least one.

The easiest way to create a new figure is with pyplot:

12 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

fig = plt.figure() # an empty figure with no Azes
fig, ax = plt.subplots() # a figure with a single Azes
fig, axs = plt.subplots(2, 2) # a figure with a 2z2 grid of Azes

It's convenient to create the axes together with the figure, but you can also add axes
later on, allowing for more complex axes layouts.

Axes

This is what you think of as 'a plot’, it is the region of the image with the data space.
A given figure can contain many Axes, but a given 4zes object can only be in one
Figure. The Axes contains two (or three in the case of 3D) 4zis objects (be aware of
the difference between Axes and Axis) which take care of the data limits (the data
limits can also be controlled via the azes.Azes.set_zlim() and azes.Azes.set_ylim()
methods). Each 4zes has a title (set via set_title()), an x-label (set via set_zlabel ()),
and a y-label set via set_ylabel ().

The Azes class and its member functions are the primary entry point to working with
the OO interface.

Axis

These are the number-line-like objects. They take care of setting the graph limits and
generating the ticks (the marks on the axis) and ticklabels (strings labeling the ticks).
The location of the ticks is determined by a Locator object and the ticklabel strings
are formatted by a Formatter. The combination of the correct Locator and Formatter
gives very fine control over the tick locations and labels.

Artist

Basically everything you can see on the figure is an artist (even the Figure, Azes, and
Azis objects). This includes Tezt objects, Line2D objects, collections objects, Patch
objects ... (you get the idea). When the figure is rendered, all of the artists are drawn
to the canvas. Most Artists are tied to an Axes; such an Artist cannot be shared by
multiple Axes, or moved from one to another.

2.1. Introductory 13

Matplotlib, Release 3.3.4

Types of inputs to plotting functions

All of plotting functions expect numpy.array Or numpy .ma.masked_array as input. Classes
that are 'array-like' such as pandas data objects and numpy .matrix may or may not work
as intended. It is best to convert these to numpy.array objects prior to plotting.

For example, to convert a pandas.DataFrame

a = pandas.DataFrame(np.random.rand(4, 5), columns = list('abcde'))
a_asarray = a.values

and to convert a numpy .matrix

b = np.matrix([[1, 2], [3, 411)
b_asarray = np.asarray(b)

The object-oriented interface and the pyplot interface

As noted above, there are essentially two ways to use Matplotlib:

» Explicitly create figures and axes, and call methods on them (the "object-oriented
(O0) style").

* Rely on pyplot to automatically create and manage the figures and axes, and use
pyplot functions for plotting.

So one can do (OO-style)

x = np.linspace(0, 2, 100)

Note that even in the O0-style, we use “.pyplot.figure” to create the figure.
fig, ax = plt.subplots() # Create a figure and an azes.

ax.plot(x, x, label='linear') # Plot some data on the azes.

ax.plot(x, x*+*2, label='quadratic') # Plot more data on the azes...

ax.plot(x, x*+*3, label='cubic') # ... and some more.

ax.set_xlabel('x label') # Add an z-label to the azes.

ax.set_ylabel('y label') # Add a y-label to the azes.

ax.set_title("Simple Plot") # Add a title to the azes.

ax.legend() # Add a legend.

14 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ma.masked_array.html#numpy.ma.masked_array
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

Matplotlib, Release 3.3.4

Simple Plot

8 1 — linear
guadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

<matplotlib.legend.Legend object at 0x7fcbe25e7e20>

or (pyplot-style)

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') # Plot some data on the (implicit) azes.
plt.plot(x, x**2, label='quadratic') # etc.

plt.plot(x, x*+*3, label='cubic')

plt.xlabel('x label')

plt.ylabel('y label')

plt.title("Simple Plot")

plt.legend()

2.1. Introductory 15

Matplotlib, Release 3.3.4

Simple Plot

8 1 — linear
guadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

<matplotlib.legend.Legend object at 0x7fcbe098ae20>

Actually there is a third approach, for the case where you are embedding Matplotlib
in a GUI application, which completely drops pyplot, even for figure creation. We
won't discuss it here; see the corresponding section in the gallery for more info
(user interfaces).

Matplotlib's documentation and examples use both the OO and the pyplot approaches
(which are equally powerful), and you should feel free to use either (however, it is
preferable pick one of them and stick to it, instead of mixing them). In general, we
suggest to restrict pyplot to interactive plotting (e.g., in a Jupyter notebook), and
to prefer the OO-style for non-interactive plotting (in functions and scripts that are
intended to be reused as part of a larger project).

Note: In older examples, you may find examples that instead used the so-called
pylab interface, via from pylab import *. This star-import imports everything both
from pyplot and from numpy, so that one could do

x = linspace(0, 2, 100)

(continues on next page)

16 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/index.html#module-numpy

Matplotlib, Release 3.3.4

(continued from previous page)

plot(x, x, label='linear')

for an even more MATLAB-like style. This approach is strongly discouraged nowadays
and deprecated; it is only mentioned here because you may still encounter it in the
wild.

Typically one finds oneself making the same plots over and over again, but with differ-
ent data sets, which leads to needing to write specialized functions to do the plotting.
The recommended function signature is something like:

def my_plotter(ax, datal, data2, param_dict):

nmnn

A helper function to make a graph

Parameters
axr : Azes
The azes to draw to

datal : array
The = data

data2 :@ array
The y data

param_dict : dict
Dictionary of kwargs to pass to azx.plot

Returns
out : list
list of artists added
mnn
out = ax.plot(datal, data2, **param_dict)
return out

which you would then use as:

datal, data2, data3, data4 = np.random.randn(4, 100)
fig, ax = plt.subplots(l, 1)
my_plotter(ax, datal, data2, {'marker': 'x'})

2.1. Introductory 17

Matplotlib, Release 3.3.4

Out:

[<matplotlib.lines.Line2D object at 0x7fcbe09dfd30>]

or if you wanted to have 2 sub-plots:

fig, (axl, ax2) = plt.subplots(l, 2)
my_plotter(axl, datal, data2, {'marker': 'x'})
my_plotter(ax2, data3, data4, {'marker': 'o'})

18

Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Out:

[<matplotlib.lines.Line2D object at 0x7fcbel05ccd0>]

For these simple examples this style seems like overkill, however once the graphs get
slightly more complex it pays off.

Backends

What is a backend?

A lot of documentation on the website and in the mailing lists refers to the "backend"
and many new users are confused by this term. matplotlib targets many different use
cases and output formats. Some people use matplotlib interactively from the python
shell and have plotting windows pop up when they type commands. Some people run
Jupyter notebooks and draw inline plots for quick data analysis. Others embed mat-
plotlib into graphical user interfaces like wxpython or pygtk to build rich applications.
Some people use matplotlib in batch scripts to generate postscript images from nu-
merical simulations, and still others run web application servers to dynamically serve
up graphs.

2.1. Introductory 19

https://jupyter.org

Matplotlib, Release 3.3.4

To support all of these use cases, matplotlib can target different outputs, and each
of these capabilities is called a backend; the "frontend" is the user facing code, i.e.,
the plotting code, whereas the "backend" does all the hard work behind-the-scenes to
make the figure. There are two types of backends: user interface backends (for use in
pygtk, wxpython, tkinter, qt4, or macosx; also referred to as "interactive backends")
and hardcopy backends to make image files (PNG, SVG, PDEF, PS; also referred to as
"non-interactive backends").

Selecting a backend

There are three ways to configure your backend:
1. The rcParams["backend"] (default: 'agg') parameter in your matplotlibrc file
2. The MPLBACKEND environment variable
3. The function matplotlib.use()

A more detailed description is given below.

If multiple of these are configurations are present, the last one from the list
takes precedence; e.g. calling matplotiib.use() will override the setting in your
matplotlibrec.

If no backend is explicitly set, Matplotlib automatically detects a usable backend
based on what is available on your system and on whether a GUI event loop is al-
ready running. On Linux, if the environment variable DISPLAY is unset, the "event
loop" is identified as "headless", which causes a fallback to a noninteractive backend

(agg).
Here is a detailed description of the configuration methods:

1. Setting rcParams["backend"] (default: 'agg') in your matplotlibrc file:

backend : qtbagg # use pyqt5 with antigrain (agg) rendering

See also Customizing Matplotlib with style sheets and rcParams.
2. Setting the MPLBACKEND environment variable:

You can set the environment variable either for your current shell or for a single
script.

On Unix:

> export MPLBACKEND=qtbagg
> python simple_plot.py

> MPLBACKEND=qt5agg python simple_plot.py

On Windows, only the former is possible:

20 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file
../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file

Matplotlib, Release 3.3.4

> set MPLBACKEND=qtbagg
> python simple_plot.py

Setting this environment variable will override the backend parameter in any
matplotlibrc, even if there is a matplotlibrc in your current working directory.
Therefore, setting MPLBACKEND globally, e.g. in your .bashrc or .profile, is dis-
couraged as it might lead to counter-intuitive behavior.

3. If your script depends on a specific backend you can use the function matplotiib.
use():

import matplotlib
matplotlib.use('qtbagg"')

This should be done before any figure is created; otherwise Matplotlib may fail
to switch the backend and raise an ImportError.

Using use will require changes in your code if users want to use a different back-
end. Therefore, you should avoid explicitly calling uzse unless absolutely neces-

sary.

The builtin backends

By default, Matplotlib should automatically select a default backend which allows
both interactive work and plotting from scripts, with output to the screen and/or to
a file, so at least initially you will not need to worry about the backend. The most
common exception is if your Python distribution comes without tkinter and you have
no other GUI toolkit installed; this happens on certain Linux distributions, where you
need to install a Linux package named python-tk (or similar).

If, however, you want to write graphical user interfaces, or a web application server
(How to use Matplotlib in a web application server), or need a better understanding of
what is going on, read on. To make things a little more customizable for graphical user
interfaces, matplotlib separates the concept of the renderer (the thing that actually
does the drawing) from the canvas (the place where the drawing goes). The canonical
renderer for user interfaces is Agg which uses the Anti-Grain Geometry C++ library
to make a raster (pixel) image of the figure; it is used by the Qt5Agg, Qt4Agg, GTK3Agg,
wxAgg, TkAgg, and macosx backends. An alternative renderer is based on the Cairo
library, used by Qt5Cairo, Qt4Cairo, etc.

For the rendering engines, one can also distinguish between vector or raster render-
ers. Vector graphics languages issue drawing commands like "draw a line from this
point to this point" and hence are scale free, and raster backends generate a pixel
representation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backend for
each; these are non-interactive backends, capable of writing to a file):

2.1. Introductory 21

https://docs.python.org/3/library/tkinter.html#module-tkinter
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Raster_graphics

Matplotlib, Release 3.3.4

Ren- Filetypes Description
derer
AGG | png raster graphics -- high quality images using the Anti-Grain
Geometry engine
PDF | pdf vector graphics -- Portable Document Format
PS ps, eps vector graphics -- Postscript output
SVG svg vector graphics -- Scalable Vector Graphics
PGF | pgf, pdf vector graphics -- using the pgf package
Cairo | png, ps, pdf, | raster or vector graphics -- using the Cairo library
svg

To save plots using the non-interactive backends, use the matplotlib.pyplot.
savefig('filename') method.

And here are the user interfaces and renderer combinations supported; these are

interact
rendere

ive backends, capable of displaying to the screen and of using appropriate
rs from the table above to write to a file:

Back-
end

Description

Qt5Ag

JAgg rendering in a Qt5 canvas (requires PyQt5). This backend can be acti-
vated in IPython with %matplotlib qt5.

ipympl Agg rendering embedded in a Jupyter widget. (requires ipympl). This back-

end can be enabled in a Jupyter notebook with %matplotlib ipympl.

GTK3Aglgg rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or

cairocffi). This backend can be activated in IPython with /matplotlib gtk3.

ma- Agg rendering into a Cocoa canvas in OSX. This backend can be activated

cosx | in IPython with Ymatplotlib osx.

Tk- Agg rendering to a Tk canvas (requires Tkinter). This backend can be ac-

Agg tivated in IPython with %matplotlib tk.

nbAgg| Embed an interactive figure in a Jupyter classic notebook. This backend
can be enabled in Jupyter notebooks via %matplotlib notebook.

We- On show() will start a tornado server with an interactive figure.

bAgg

GTK3(Cdimiro rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or
cairocffi).

Qt4AggAgg rendering to a Qt4 canvas (requires PyQt4 or pyside). This backend
can be activated in IPython with Ymatplotlib qt4.

WX- Agg rendering to a wxWidgets canvas (requires wxPython 4). This backend

Agg can be activated in IPython with Ymatplotlib wx.

Note: The names of builtin backends case-insensitive; e.g., 'Qt5Agg' and 'qtSagg’

are equivalent.

22

Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Raster_graphics
http://antigrain.com/
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://ctan.org/pkg/pgf
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://www.cairographics.org
https://riverbankcomputing.com/software/pyqt/intro
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://docs.python.org/3/library/tk.html
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://riverbankcomputing.com/software/pyqt/intro
https://www.wxpython.org/

Matplotlib, Release 3.3.4

ipympl

The Jupyter widget ecosystem is moving too fast to support directly in Matplotlib. To
install ipympl

pip install ipympl
jupyter nbextension enable --py --sys-prefix ipympl

or

conda install ipympl -c conda-forge

See jupyter-matplotlib for more details.

How do | select PyQt4 or PySide?

The gT_API environment variable can be set to either pyqt or pyside to use PyQt4 or
PySide, respectively.

Since the default value for the bindings to be used is PyQt4, Matplotlib first tries to
import it, if the import fails, it tries to import PySide.

Using non-builtin backends

More generally, any importable backend can be selected by using any of the methods
above. If name.of.the.backend is the module containing the backend, use module:/
/name.of .the.backend as the backend name, e.g. matplotlib.use('module://name.of.
the.backend').

What is interactive mode?

Use of an interactive backend (see What is a backend?) permits--but does not by itself
require or ensure--plotting to the screen. Whether and when plotting to the screen
occurs, and whether a script or shell session continues after a plot is drawn on the
screen, depends on the functions and methods that are called, and on a state variable
that determines whether matplotlib is in "interactive mode". The default Boolean
value is set by the matplotlibrc file, and may be customized like any other configura-
tion parameter (see Customizing Matplotlib with style sheets and rcParams). It may
also be set via matplotlib.interactive(), and its value may be queried via matplotlibd.
is_interactive (). Turning interactive mode on and off in the middle of a stream of
plotting commands, whether in a script or in a shell, is rarely needed and potentially
confusing, so in the following we will assume all plotting is done with interactive mode
either on or off.

2.1. Introductory 23

https://github.com/matplotlib/jupyter-matplotlib

Matplotlib, Release 3.3.4

Note: Major changes related to interactivity, and in particular the role and behavior
of show(), were made in the transition to matplotlib version 1.0, and bugs were fixed
in 1.0.1. Here we describe the version 1.0.1 behavior for the primary interactive
backends, with the partial exception of macosx.

Interactive mode may also be turned on via matplotlib.pyplot.ion(), and turned off
via matplotlib.pyplot.ioff().

Note: Interactive mode works with suitable backends in ipython and in the ordinary
python shell, but it does not work in the IDLE IDE. If the default backend does not
support interactivity, an interactive backend can be explicitly activated using any of
the methods discussed in What is a backend?.

Interactive example

From an ordinary python prompt, or after invoking ipython with no options, try this:

import matplotlib.pyplot as plt
plt.ion()
plt.plot([1.6, 2.7])

This will pop up a plot window. Your terminal prompt will remain active, so that you
can type additional commands such as:

plt.title("interactive test")
plt.xlabel("index")

On most interactive backends, the figure window will also be updated if you change
it via the object-oriented interface. E.g. get a reference to the 4zes instance, and call
a method of that instance:

ax = plt.gcaQ)
ax.plot([3.1, 2.2])

If you are using certain backends (like macosx), or an older version of matplotlib, you
may not see the new line added to the plot immediately. In this case, you need to
explicitly call draw() in order to update the plot:

plt.draw()

24 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Non-interactive example

Start a fresh session as in the previous example, but now turn interactive mode off:

import matplotlib.pyplot as plt
plt.ioff ()
plt.plot([1.6, 2.7]1)

Nothing happened--or at least nothing has shown up on the screen (unless you are
using macosx backend, which is anomalous). To make the plot appear, you need to
do this:

plt.show()

Now you see the plot, but your terminal command line is unresponsive; pyplot.show()
blocks the input of additional commands until you manually kill the plot window.

What good is this--being forced to use a blocking function? Suppose you need a script
that plots the contents of a file to the screen. You want to look at that plot, and then
end the script. Without some blocking command such as show(), the script would
flash up the plot and then end immediately, leaving nothing on the screen.

In addition, non-interactive mode delays all drawing until show() is called; this is more
efficient than redrawing the plot each time a line in the script adds a new feature.

Prior to version 1.0, show() generally could not be called more than once in a single
script (although sometimes one could get away with it); for version 1.0.1 and above,
this restriction is lifted, so one can write a script like this:

import numpy as np
import matplotlib.pyplot as plt

plt.ioff ()

for i in range(3):
plt.plot(np.random.rand(10))
plt.show()

which makes three plots, one at a time. I.e. the second plot will show up, once the
first plot is closed.

Summary

In interactive mode, pyplot functions automatically draw to the screen.

When plotting interactively, if using object method calls in addition to pyplot func-
tions, then call drew() whenever you want to refresh the plot.

Use non-interactive mode in scripts in which you want to generate one or more figures
and display them before ending or generating a new set of figures. In that case,
use show() to display the figure(s) and to block execution until you have manually
destroyed them.

2.1. Introductory 25

Matplotlib, Release 3.3.4

Performance

Whether exploring data in interactive mode or programmatically saving lots of plots,
rendering performance can be a painful bottleneck in your pipeline. Matplotlib pro-
vides a couple ways to greatly reduce rendering time at the cost of a slight change
(to a settable tolerance) in your plot's appearance. The methods available to reduce
rendering time depend on the type of plot that is being created.

Line segment simplification

For plots that have line segments (e.g. typical line plots, outlines of polygons, etc.),
rendering performance can be controlled by rcParams["path.simplify"] (default: True)
and rcParams["path.simplify_threshold"] (default: 0.111111111111), which can be de-
fined e.g. in the matplotlibrc file (see Customizing Matplotlib with style sheets and
rcParams for more information about the matplotlibre file). rcParams["path.simplify"]
(default: True) is a boolean indicating whether or not line segments are simplified at
all. rcParams["path.simplify_threshold"] (default: 0.111111111111) controls how much
line segments are simplified; higher thresholds result in quicker rendering.

The following script will first display the data without any simplification, and then
display the same data with simplification. Try interacting with both of them:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

Setup, and create the data to plot

y = np.random.rand(100000)

y[50000:] *= 2

y [np.geomspace (10, 50000, 400).astype(int)]
mpl.rcParams['path.simplify'] = True

I
|
—

mpl.rcParams['path.simplify_threshold'] = 0.0
plt.plot(y)
plt.show()
mpl.rcParams['path.simplify_threshold'] = 1.0

plt.plot(y)
plt.show()

Matplotlib currently defaults to a conservative simplification threshold of 1/9. If you
want to change your default settings to use a different value, you can change your
matplotlibrc file. Alternatively, you could create a new style for interactive plotting
(with maximal simplification) and another style for publication quality plotting (with
minimal simplification) and activate them as necessary. See Customizing Matplotlib
with style sheets and rcParams for instructions on how to perform these actions.

The simplification works by iteratively merging line segments into a single vector until
the next line segment's perpendicular distance to the vector (measured in display-
coordinate space) is greater than the path.simplify_threshold parameter.

26 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file

Matplotlib, Release 3.3.4

Note: Changesrelated to how line segments are simplified were made in version 2.1.
Rendering time will still be improved by these parameters prior to 2.1, but rendering
time for some kinds of data will be vastly improved in versions 2.1 and greater.

Marker simplification

Markers can also be simplified, albeit less robustly than line segments. Marker simpli-
fication is only available to Line2D objects (through the markevery property). Wherever
Line2D construction parameters are passed through, such as matplotiib.pyplot.plot ()
and matplotlib.azes.Azes.plot (), the markevery parameter can be used:

plt.plot(x, y, markevery=10)

The markevery argument allows for naive subsampling, or an at-
tempt at evenly spaced (along the x axis) sampling. See the
/gallery/lines bars and markers/markevery demo for more information.

Splitting lines into smaller chunks

If you are using the Agg backend (see What is a backend?), then you can make use
of rcParams["agg.path.chunksize"] (default: 0) This allows you to specify a chunk size,
and any lines with greater than that many vertices will be split into multiple lines,
each of which has no more than agg.path.chunksize many vertices. (Unless agg.path.
chunksize is zero, in which case there is no chunking.) For some kind of data, chunking
the line up into reasonable sizes can greatly decrease rendering time.

The following script will first display the data without any chunk size restriction, and
then display the same data with a chunk size of 10,000. The difference can best be
seen when the figures are large, try maximizing the GUI and then interacting with
them:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl
mpl.rcParams['path.simplify_threshold'] = 1.0

Setup, and create the data to plot

y = np.random.rand(100000)

y[50000:] *= 2

y [np.geomspace (10, 50000, 400).astype(int)] = -1
mpl.rcParams['path.simplify'] = True

mpl.rcParams['agg.path.chunksize'] = 0
plt.plot(y)
plt.show()

(continues on next page)

2.1. Introductory 27

../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} file

Matplotlib, Release 3.3.4

(continued from previous page)

mpl.rcParams['agg.path.chunksize'] = 10000
plt.plot(y)
plt.show()

Legends

The default legend behavior for axes attempts to find the location that covers the
fewest data points (loc='best'). This can be a very expensive computation if there
are lots of data points. In this case, you may want to provide a specific location.

Using the fast style

The fast style can be used to automatically set simplification and chunking parameters
to reasonable settings to speed up plotting large amounts of data. It can be used
simply by running:

import matplotlib.style as mplstyle
mplstyle.use('fast')

It is very light weight, so it plays nicely with other styles, just make sure the fast style
is applied last so that other styles do not overwrite the settings:

mplstyle.use(['dark_background', 'ggplot', 'fast'])

Total running time of the script: (0 minutes 2.232 seconds)

2.1.2 Pyplot tutorial

An introduction to the pyplot interface.

Intro to pyplot

matplotlib.pyplot is a collection of functions that make matplotlib work like MATLAB.
Each pyplot function makes some change to a figure: e.g., creates a figure, creates a
plotting area in a figure, plots some lines in a plotting area, decorates the plot with
labels, etc.

In matplotlib.pyplot various states are preserved across function calls, so that it
keeps track of things like the current figure and plotting area, and the plotting func-
tions are directed to the current axes (please note that "axes" here and in most places
in the documentation refers to the axes part of a figure and not the strict mathemat-
ical term for more than one axis).

28 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Note: the pyplot API is generally less-flexible than the object-oriented API. Most of
the function calls you see here can also be called as methods from an Axes object. We
recommend browsing the tutorials and examples to see how this works.

Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 41)
plt.ylabel('some numbers')
plt.show()

4.0

3.5 T

3.0

2.5

some numbers

2.0 1

1.5+

1.0+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you
provide a single list or array to plot, matplotlib assumes it is a sequence of y values,
and automatically generates the x values for you. Since python ranges start with 0,
the default x vector has the same length as y but starts with 0. Hence the x data are
(o, 1, 2, 3].

plot is a versatile function, and will take an arbitrary number of arguments. For
example, to plot x versus y, you can write:

2.1. Introductory 29

Matplotlib, Release 3.3.4

plt.plot([1, 2, 3, 41, [1, 4, 9, 16])

16 ~

14 ~

12 ~

10 ~

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7fcbdc3cd3d0>]

Formatting the style of your plot

For every x, y pair of arguments, there is an optional third argument which is the
format string that indicates the color and line type of the plot. The letters and symbols
of the format string are from MATLAB, and you concatenate a color string with a line
style string. The default format string is 'b-', which is a solid blue line. For example,
to plot the above with red circles, you would issue

plt.plot([1, 2, 3, 41, [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 201)
plt.show()

30 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

20.0

17.5 4

15.0 +

12.5 +

10.0 +

7.5 4

5.0 -

2.5 1

0.0

See the pilot documentation for a complete list of line styles and format strings. The
azis function in the example above takes a list of [xmin, xmax, ymin, ymax] and spec-
ifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric
processing. Generally, you will use numpy arrays. In fact, all sequences are converted
to numpy arrays internally. The example below illustrates plotting several lines with
different format styles in one function call using arrays.

import numpy as np

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r——', t, t**2, 'bs', t, t**3, 'g°')
plt.show()

2.1. Introductory 31

http://www.numpy.org

Matplotlib, Release 3.3.4

A
100 - K
A
80 1
A
A
60 1
A
A
40 - N
A
A
] N gn® .
]
A gunn® .
pef®*® -
0 I--I-.—.-I-I—I-.--.-.-—.-—. --------------
T T T I I I
)] 1 2 3 A :

Plotting with keyword strings
There are some instances where you have data in a format that lets you access par-
ticular variables with strings. For example, with numpy.recarray or pandas.DataFrame.

Matplotlib allows you provide such an object with the data keyword argument. If pro-
vided, then you may generate plots with the strings corresponding to these variables.

data = {'a': np.arange(50),

'c': np.random.randint (0, 50, 50),

'd': np.random.randn(50)}
data['b'] = datal['a']l + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100

plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')

plt.ylabel('entry b')

plt.show()

32 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.3.4

entry b

60
50 4

40 A

20 4 e ©

10 - ° .

30 + '.

-10 | |

Plotting with categorical variables

20

40 50

It is also possible to create a plot using categorical variables. Matplotlib allows you
to pass categorical variables directly to many plotting functions. For example:

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]
plt.figure(figsize=(9, 3))
plt.subplot(131)

plt.bar(names, values)

plt.subplot(132)

plt.scatter(names, values)

plt.subplot (133)

plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

2.1. Introductory 33

Matplotlib, Release 3.3.4

Categorical Plotting

100 A 100 A ®| 100 4
80 4 80 4 80
60 60 - 60 -
40 A 40 40
20 A 201 20 A
®
0@ 04
D - T T T T T T
group_a group_b group ¢ group_a group_b group_c group_a group_b group_c

Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc;
see matplotlib. lines.Line2D. There are several ways to set line properties

* Use keyword args:

plt.plot(x, y, linewidth=2.0)

* Use the setter methods of a Line2D instance. plot returns a list of Line2D objects;
e.g., linel, line2 = plot(xl, yi, x2, y2). In the code below we will suppose
that we have only one line so that the list returned is of length 1. We use tuple
unpacking with line, to get the first element of that list:

line, = plt.plot(x, y, '-")
line.set_antialiased(False) # turn off antialiasing

* Use setp. The example below uses a MATLAB-style function to set multiple
properties on a list of lines. setp works transparently with a list of objects or
a single object. You can either use python keyword arguments or MATLAB-style
string/value pairs:

lines = plt.plot(x1l, yi, x2, y2)

use keyword args

plt.setp(lines, color='r', linewidth=2.0)

or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

Here are the available Line2D properties.

Property Value Type

alpha float

animated [True | False]

antialiased or aa [True | False]

clip box a matplotlib.transform.Bbox instance

continues on next page

34 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Table 1 — continued from previous page

Property Value Type

clip on [True | False]

clip path a Path instance and a Transform instance, a Patch
color or c any matplotlib color

contains the hit testing function

dash capstyle ['butt' | 'round' | 'projecting']
dash joinstyle ['miter' | 'round' | 'bevel']

dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string

linestyle or Is ['=] == '=."]":" | 'steps' | ...]
linewidth or lw float value in points

marker [+, r2r]3] rar]

markeredgecolor or mec | any matplotlib color
markeredgewidth or mew | float value in points

markerfacecolor or mfc any matplotlib color

markersize or ms float

markevery [None | integer | (startind, stride)]
picker used in interactive line selection
pickradius the line pick selection radius

solid capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]

xdata np.array

ydata np.array

zorder any number

To get a list of settable line properties, call the setp function with a line or lines as
argument

In [69]: lines = plt.plot([il, 2, 3])

In [70]: plt.setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

2.1. Introductory 35

Matplotlib, Release 3.3.4

Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All
plotting functions apply to the current axes. The function gca returns the current axes
(a matplotlib.azes.Azes instance), and gcf returns the current figure (a matplotlib.
figure.Figure instance). Normally, you don't have to worry about this, because it is
all taken care of behind the scenes. Below is a script to create two subplots.

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

tl = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(tl, £(t1), 'bo', t2, £(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2%np.pi*t2), 'r--')
plt.show()

1.0+

0.5 4

0.0 4

_0.5 -

1.04 = - F&Y =~
0.5 _ [
0.0 -

_'U.S . 1
\

-1.0 - hd b

The figure call here is optional because figure(1) will be created by default, just as

36 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

a subplot(111) will be created by default if you don't manually specify any axes. The
subplot call specifies numrows, numcols, plot_number where plot_number ranges from 1
to numrows*numcols. The commas in the subplot call are optional if numrows*numcols<10.
So subplot(211) is identical to subplot(2, 1, 1).

You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, i.e., not on a rectangular grid, use azes, which allows you to specify the
location as axes([left, bottom, width, height]) where all values are in fractional (0
to 1) coordinates. See /gallery/subplots axes and figures/axes demo for an example
of placing axes manually and /gallery/subplots axes and figures/subplot demo for an
example with lots of subplots.

You can create multiple figures by using multiple figure calls with an increasing figure
number. Of course, each figure can contain as many axes and subplots as your heart
desires:

import matplotlib.pyplot as plt

plt.figure(1) # the first figure

plt.subplot(211) # the first subplot in the first figure
plt.plot([1, 2, 3])

plt.subplot(212) # the second subplot in the first figure

plt.plot([4, 5, 61)

plt.figure(2) # a second figure

plt.plot([4, 5, 6]) # creates a subplot(111) by default
plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figurel current

plt.title('Easy as 1, 2, 3') # subplot 211 title

You can clear the current figure with cif and the current axes with cia. If you find it
annoying that states (specifically the current image, figure and axes) are being main-
tained for you behind the scenes, don't despair: this is just a thin stateful wrapper
around an object oriented API, which you can use instead (see Artist tutorial)

If you are making lots of figures, you need to be aware of one more thing: the memory
required for a figure is not completely released until the figure is explicitly closed with
close. Deleting all references to the figure, and/or using the window manager to kill
the window in which the figure appears on the screen, is not enough, because pyplot
maintains internal references until close is called.

2.1. Introductory 37

Matplotlib, Release 3.3.4

Working with text

tezt can be used to add text in an arbitrary location, and zlabel, ylabel and title are
used to add text in the indicated locations (see Text in Matplotlib Plots for a more
detailed example)

mu, sigma = 100, 15

X =

mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, demnsity=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability")
plt.title('Histogram of IQ')

plt.text (60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.031)

plt.grid(True)

plt.show()

Probability

Histogram of 1Q
0.030

0.025

0.020

0.015

0.010

0.005

40 60 80 100 120 140 160
Smarts

All of the tezt functions return a matplotlib. tezt. Text instance. Just as with with lines
above, you can customize the properties by passing keyword arguments into the text

38

Chapter 2. Tutorials

Matplotlib, Release 3.3.4

functions or using setp:

t = plt.xlabel('my data', fontsize=14, color='red')

These properties are covered in more detail in Text properties and layout.

Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to
write the expression o; = 15 in the title, you can write a TeX expression surrounded
by dollar signs:

plt.title(r'$\sigma_i=15%")

The r preceding the title string is important -- it signifies that the string is a raw
string and not to treat backslashes as python escapes. matplotlib has a built-in TeX
expression parser and layout engine, and ships its own math fonts -- for details see
Writing mathematical expressions. Thus you can use mathematical text across plat-
forms without requiring a TeX installation. For those who have LaTeX and dvipng
installed, you can also use LaTeX to format your text and incorporate the output di-
rectly into your display figures or saved postscript -- see Text rendering With LaTeX.

Annotating text

The uses of the basic tezt function above place text at an arbitrary position on the
Axes. A common use for text is to annotate some feature of the plot, and the annotate
method provides helper functionality to make annotations easy. In an annotation,
there are two points to consider: the location being annotated represented by the
argument xy and the location of the text xytext. Both of these arguments are (x, y)
tuples.

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05),

)

plt.ylim(-2, 2)
plt.show()

2.1. Introductory 39

Matplotlib, Release 3.3.4

2.0
1.5 local max
1.0 ~
0.5 1
0.0
—0.5 -
~1.0 -

1.5 4

=2.0 T

In this basic example, both the xy (arrow tip) and xytext locations (text location) are
in data coordinates. There are a variety of other coordinate systems one can choose
-- see Basic annotation and Advanced Annotations for details. More examples can be
found in /gallery/text labels and annotations/annotation demo.

Logarithmic and other nonlinear axes

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and logit
scales. This is commonly used if data spans many orders of magnitude. Changing the
scale of an axis is easy:

plt.xscale('log")

An example of four plots with the same data and different scales for the y axis is
shown below.

Fizing random state for reproducibility
np.random. seed (19680801)

make up some data in the open interval (0, 1)
y = np.random.normal(loc=0.5, scale=0.4, size=1000)

(continues on next page)

40 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

y=yly >0 & (y < D]
y.sort()
x = np.arange(len(y))

plot with various azes scales
plt.figure()

linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)

log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log")
plt.grid(True)

symmetric log

plt.subplot(223)

plt.plot(x, y - y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog')

plt.grid(True)

logit

plt.subplot (224)

plt.plot(x, y)

plt.yscale('logit"')

plt.title('logit')

plt.grid(True)

Adjust the subplot layout, because the logit onme may take more space

than usual, due to y-tick labels like "1 - 107 {-3}"

plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)

plt.show()

2.1. Introductory

41

Matplotlib, Release 3.3.4

linear log
1.0 109 -
0.8 1
0.6 lﬂ_l E
0.4 -
0.2 -
1072 3
D.G_ T T T T T : T T T T T
0 200 400 600 800 0 200 400 600 800
symlog logit
lo-1] 1-1073 3
10-2 | 1-1077 7
1-10"1]
0 1]
13
—10-2 1]
1071 4
_10—1 . 1
1072 3
T T T T T T T T T T
0 200 400 600 800 0 200 400 600 800

It is also possible to add your own scale, see Developer's guide for creating scales
and transformations for details.

Total running time of the script: (0 minutes 3.485 seconds)

2.1.3 Sample plots in Matplotlib

Here you'll find a host of example plots with the code that generated them.

Line Plot

Here's how to create a line plot with text labels using plot ().

42 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

About as simple as it gets, folks

2.001

1754

1.50 4

1.254

1.00 4

voltage (mV)

0.75 4

0.50 4

0.25 4

0.00 4

r r T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
time (s)

Fig. 1: Simple Plot

Multiple subplots in one figure

Multiple axes (i.e. subplots) are created with the subplot () function:

A tale of 2 subplots

10+

0.5 4

0.0 4

Damped oscillation

o
=
N
w4
N
w

1.0+

0.5 4

0.0 4

Undamped

-1.0 4

T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
time (s)

Fig. 2: Subplot

Images

Matplotlib can display images (assuming equally spaced horizontal dimensions) using
the imshow() function.

2.1. Introductory 43

../../gallery/lines_bars_and_markers/simple_plot.html
../../gallery/subplots_axes_and_figures/subplot.html

Matplotlib, Release 3.3.4

CT density

Fig. 3: Example of using <mshow() to display a CT scan

Contouring and pseudocolor

The pcolormesh() function can make a colored representation of a two-dimensional
array, even if the horizontal dimensions are unevenly spaced. The contour() function
is another way to represent the same data:

Fig. 4: Example comparing pcolormesh() and contour() for plotting two-dimensional
data

44 Chapter 2. Tutorials

../../gallery/images_contours_and_fields/image_demo.html
../../gallery/images_contours_and_fields/pcolormesh_levels.html

Matplotlib, Release 3.3.4

Histograms

The nrist () function automatically generates histograms and returns the bin counts
or probabilities:

Histogram of 1Q: p =100, =15

0.035 1

0.030 4

e
o
N
w

0.020 1

Probability density
o
o
=1
o

0.010 4

0.005 1

0.000 -

Smarts

Fig. 5: Histogram Features

Paths

You can add arbitrary paths in Matplotlib using the matplotlib.path module:

Fig. 6: Path Patch

2.1. Introductory 45

../../gallery/statistics/histogram_features.html
../../gallery/shapes_and_collections/path_patch.html

Matplotlib, Release 3.3.4

Three-dimensional plotting

The mplot3d toolkit (see Getting started and mplot3d-examples-index) has support
for simple 3d graphs including surface, wireframe, scatter, and bar charts.

101

0.79

0.56

0.34 0.5
0.11

-0.11

-0.34 0.0
-0.56

-0.79

-1.01 —=0.5

Fig. 7: Surface3d

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the mpiot3d
toolkit. This toolkit is included with all standard Matplotlib installs.

Streamplot

The streamplot () function plots the streamlines of a vector field. In addition to simply
plotting the streamlines, it allows you to map the colors and/or line widths of stream-
lines to a separate parameter, such as the speed or local intensity of the vector field.

This feature complements the quiver() function for plotting vector fields. Thanks to
Tom Flannaghan and Tony Yu for adding the streamplot function.

Ellipses

In support of the Phoenix mission to Mars (which used Matplotlib to display ground
tracking of spacecraft), Michael Droettboom built on work by Charlie Moad to provide
an extremely accurate 8-spline approximation to elliptical arcs (see 4rc), which are
insensitive to zoom level.

46 Chapter 2. Tutorials

../../gallery/mplot3d/surface3d.html
http://www.jpl.nasa.gov/news/phoenix/main.php

Matplotlib, Release 3.3.4

Varying Density

Varying Color

—=

=

:

\

3 2 -1 o 1 2 3
Varying Line Width

3
24
14
0

-1

y
-3 -2 -1 0

Streamplot with Masking

N

i

Iz

|

Fig. 8: Streamplot with various plotting options.

1

2 3

Fig. 9: Ellipse Demo

0.0
-2.5
-5.0
=15
-10.0
=125

0.0
-2.5
-5.0
=15
-10.0
-12.5

2.1. Introductory

47

../../gallery/images_contours_and_fields/plot_streamplot.html
../../gallery/shapes_and_collections/ellipse_demo.html

Matplotlib, Release 3.3.4

Bar charts

Use the bvar() function to make bar charts, which includes customizations such as
error bars:

Johnny Doe

Push Ups 16th k14

|

| 17
sec

Agility

| 12:52

Mile Run 73rd
min:sec

Test Scores

Flexed Arm 95th | 48
Hang sec

37th 7

Pacer Test F
laps

I

T T T T T T
20 30 40 50 60 70 80 920 100
Percentile Ranking Across 2nd Grade Boys
Cohort Size: 62

o
=
o

Fig. 10: Barchart Demo

You can also create stacked bars (bar stacked.py), or horizontal bar charts (barh.py).

Pie charts
The pie() function allows you to create pie charts. Optional features include auto-
labeling the percentage of area, exploding one or more wedges from the center of

the pie, and a shadow effect. Take a close look at the attached code, which generates
this figure in just a few lines of code.

Tables

The table() function adds a text table to an axes.

48 Chapter 2. Tutorials

../../gallery/statistics/barchart_demo.html
../../gallery/lines_bars_and_markers/bar_stacked.html
../../gallery/lines_bars_and_markers/barh.html

Matplotlib, Release 3.3.4

Hogs

Fig. 11: Pie Features

Loss by Disaster

2000
w 1500 4
=}
o
o
—
@
£ 1000
7
5 -
) I
0 Freeze Wind Flood uake Hall
4315 1049.4 799.6 LER 9179
292.2 717.8 456.4 1368. 865.6
ear 213.8 636.0 305.7 1175.2 796.0
ear_ | 1246 o004 153.2 677, 1925
year | 66.4 1743 75T 577.9 32.0

Fig. 12: Table Demo

2.1.

Introductory

49

../../gallery/pie_and_polar_charts/pie_features.html
../../gallery/misc/table_demo.html

Matplotlib, Release 3.3.4

Scatter plots

The scatter() function makes a scatter plot with (optional) size and color arguments.
This example plots changes in Google's stock price, with marker sizes reflecting the
trading volume and colors varying with time. Here, the alpha attribute is used to

make semitransparent circle markers.

Volume and percent change

0.20 1 @
0.15 @
0.10
— e ®)
+ 0051-® o
B « ekl
4 r N
0.00 ‘C:\? @FS ® L 4
—0.05 + @
—0.10
®
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20

4

Fig. 13: Scatter Demo2

GUI widgets

Matplotlib has basic GUI widgets that are independent of the graphical user interface
you are using, allowing you to write cross GUI figures and widgets. See matplotlib.

widgets and the widget examples.

® red
© blue 0
o green
54
—4 4
T T T T
0.0 0.2 0.4 0.6 0.8
Amp I] 5.0
Freq [5.1

Fig. 14: Slider and radio-button GUI.

50 Chapter 2.

Tutorials

../../gallery/lines_bars_and_markers/scatter_demo2.html
../../gallery/index.html
../../gallery/widgets/slider_demo.html

Matplotlib, Release 3.3.4

Filled curves

The fi11 () function lets you plot filled curves and polygons:

T T T T T T T
—6 -4 -2 0 2 4 6

Fig. 15: Fill

Thanks to Andrew Straw for adding this function.

Date handling
You can plot timeseries data with major and minor ticks and custom tick formatters
for both.

See matplotlib.ticker and matplotlib.dates for details and usage.

Log plots

The semilogz (), semilogy () and loglog() functions simplify the creation of logarithmic
plots.

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-
scaling infrastructure.

2.1. Introductory 51

../../gallery/lines_bars_and_markers/fill.html

Matplotlib, Release 3.3.4

700 4
600 -
500 4
400 -
300
200
100 A
O
20 = s S o° =
Fig. 16: Date
semilogy semilogx
100 4 1.0 -
0.5 A
0.0 A
10714
0.5 4
~1.04
i " ; T ; T T " :
0 5 10 15 20 10-2 10-1 100 101
loglog base 2 on x Errorbars go negative
2% 101 104 3
103 §
10! 4
102 4
0
6x10 10! 4
0
4x10 10° 4
3x100
T T T T 1071+ T T
273 272 2t 2 10° 10! 102

Fig. 17: Log Demo

52

Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/date.html
../../gallery/scales/log_demo.html

Matplotlib, Release 3.3.4

Polar plots

The polar() function generates polar plots.

A line plot on a polar axis
20°

Fig. 18: Polar Demo

Legends

The legend() function automatically generates figure legends, with MATLAB-
compatible legend-placement functions.

20.01

17.5 4

15.0 4

12.54

10.0 4

7.5 1

5.0 1

2.5 4

T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0

Fig. 19: Legend

Thanks to Charles Twardy for input on the legend function.

2.1. Introductory 53

../../gallery/pie_and_polar_charts/polar_demo.html
../../gallery/text_labels_and_annotations/legend.html

Matplotlib, Release 3.3.4

TeX-notation for text objects

Below is a sampling of the many TeX expressions now supported by Matplotlib's in-
ternal mathtext engine. The mathtext module provides TeX style mathematical ex-
pressions using FreeType and the DejaVu, BaKoMa computer modern, or STIX fonts.
See the matplotlib.mathtezt module for additional details.

Matplotlib's math rendering engine

i 2p 1B
'Bﬁ o Sﬁ 1 J‘a-' ' U.}_;}_ - O":U;}_..'_
Wijlpl(’; - UC‘lpl + gnz J g, daZ U9

Subscripts and superscripts:

a;> B, al,, =sin(2nfit)e 34T, .
Fractions, binomials and stacked numbers:

3, (3), 3 (5 - %)

7 G) gz \g= /)0 e
Radicals:

V2, ¥x, ...

Fonts:

Roman , [talic, Typewriter or CALLIGRAPHY
Accents:

a, a a,a, a a a a a xyz, Xyz, ...

Greek, Hebrew:

a, B, x. 6, A u, AT, Q @ 1,Y, V, R 3, 7, 1,

Delimiters, functions and Symbols:

Ll f 55 1. 2. log, sin, =, @, », x, =, 3, R,

Fig. 20: Mathtext Examples

Matplotlib's mathtext infrastructure is an independent implementation and does not
require TeX or any external packages installed on your computer. See the tutorial at
Writing mathematical expressions.

Native TeX rendering

Although Matplotlib's internal math rendering engine is quite powerful, sometimes
you need TeX. Matplotlib supports external TeX rendering of strings with the usetex

option.

54

Chapter 2. Tutorials

https://www.freetype.org/
http://www.stixfonts.org
../../gallery/text_labels_and_annotations/mathtext_examples.html

Matplotlib, Release 3.3.4

O

TeX is Number Z ;'

~
2.00 4

ity

Velo

1.00 4

00 02 04 06 08 1o
time (s)

Fig. 21: Tex Demo

EEG GUI

You can embed Matplotlib into pygtk, wx, Tk, or Qt applications. Here is a screenshot

of an EEG viewer called pbrain.

2.1. Introductory

55

../../gallery/text_labels_and_annotations/tex_demo.html
https://github.com/nipy/pbrain

Matplotlib, Release 3.3.4

% EEG Viewer and Analyzer - 0 X

File Patients VMiew Compute Help

< 4 b plEEIaAaVIEeDE I

'Message: Electrode: RTG12 i

The lower axes uses specgram() to plot the spectrogram of one of the EEG channels.
For examples of how to embed Matplotlib in different toolkits, see:

* /gallery/user interfaces/embedding in gtk3 sgskip

/gallery/user interfaces/embedding in wx2 sgskip

/gallery/user interfaces/mpl with glade3 sgskip

/gallery/user interfaces/embedding in gt sgskip

/gallery/user interfaces/embedding in tk sgskip

56 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

XKCD-style sketch plots

Just for fun, Matplotlib supports plotting in the style of xkcd.

THE DAY I REALIZED
I COULD COOK BACON
WHENEVER I WANTED

my overall health

time

"Stove Ownership” from xkcd by Randall Munroe

Fig. 22: xkcd

Subplot example

Many plot types can be combined in one figure to create powerful and flexible repre-
sentations of data.

2.1. Introductory 57

https://www.xkcd.com/
../../gallery/showcase/xkcd.html

Matplotlib, Release 3.3.4

import matplotlib.pyplot as plt
import numpy as np

np.random.seed (19680801)
data = np.random.randn(2, 100)

fig, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(datal[0])

axs[1, 0].scatter(datal[0], datal[1])

axs[0, 1].plot(data[0], datal1])

axs[1, 1].hist2d(data[0], data[1])

plt.show()

58 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

2.1.4 Image tutorial

A short tutorial on plotting images with Matplotlib.

Startup commands

First, let's start IPython. It is a most excellent enhancement to the standard Python
prompt, and it ties in especially well with Matplotlib. Start IPython either directly at
a shell, or with the Jupyter Notebook (where IPython as a running kernel).

With IPython started, we now need to connect to a GUI event loop. This tells IPython
where (and how) to display plots. To connect to a GUI loop, execute the %mat-
plotlib magic at your IPython prompt. There's more detail on exactly what this does
at IPython's documentation on GUI event loops.

If you're using Jupyter Notebook, the same commands are available, but people com-
monly use a specific argument to the %matplotlib magic:

In [1]: 7matplotlib inline

This turns on inline plotting, where plot graphics will appear in your notebook. This
has important implications for interactivity. For inline plotting, commands in cells
below the cell that outputs a plot will not affect the plot. For example, changing the
color map is not possible from cells below the cell that creates a plot. However, for
other backends, such as Qt5, that open a separate window, cells below those that
create the plot will change the plot - it is a live object in memory.

This tutorial will use Matplotlib's imperative-style plotting interface, pyplot. This in-
terface maintains global state, and is very useful for quickly and easily experimenting
with various plot settings. The alternative is the object-oriented interface, which is
also very powerful, and generally more suitable for large application development.
If you'd like to learn about the object-oriented interface, a great place to start is our
Usage guide. For now, let's get on with the imperative-style approach:

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

Importing image data into Numpy arrays

Matplotlib relies on the Pillow library to load image data.

Here's the image we're going to play with:

2.1. Introductory 59

https://ipython.readthedocs.io/en/stable/interactive/reference.html#gui-event-loop-support
https://pillow.readthedocs.io/en/latest/

Matplotlib, Release 3.3.4

It's a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get
your data, the other kinds of image that you'll most likely encounter are RGBA images,
which allow for transparency, or single-channel grayscale (luminosity) images. You
can right click on it and choose "Save image as" to download it to your computer for
the rest of this tutorial.

And here we go...

img = mpimg.imread('../../doc/_static/stinkbug.png')
print (img)

Out:

[[[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

[[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]

(continues on next page)

60 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

[0.4117647 0.4117647 0.4117647]

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]1]

[[0.41960785 0.41960785 0.41960785]
[0.41568628 0.41568628 0.41568628]
[0.41568628 0.41568628 0.41568628]

[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]]

[[0.4392157 0.4392157 0.4392157]
[0.43529412 0.43529412 0.43529412]
[0.43137255 0.43137255 0.43137255]

[0.45490196 0.45490196 0.45490196]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804 1]

[[0.44313726 0.44313726 0.44313726]
[0.44313726 0.44313726 0.44313726]
[0.4392157 0.4392157 0.4392157]

[0.4509804 0.4509804 0.4509804]
[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]1]

[[0.44313726 0.44313726 0.44313726]
[0.4509804 0.4509804 0.4509804 1]
[0.4509804 0.4509804 0.4509804]

[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]
[0.44313726 0.44313726 0.44313726]]]

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each
channel to floating point data between 0.0 and 1.0. As a side note, the only datatype
that Pillow can work with is uint8. Matplotlib plotting can handle float32 and uint8,
but image reading/writing for any format other than PNG is limited to uint8 data. Why
8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why
can they only render 8 bits/channel? Because that's about all the human eye can see.
More here (from a photography standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since
it's a black and white image, R, G, and B are all similar. An RGBA (where A is alpha,
or transparency), has 4 values per inner list, and a simple luminance image just has

2.1. Introductory 61

https://luminous-landscape.com/bit-depth/

Matplotlib, Release 3.3.4

one value (and is thus only a 2-D array, not a 3-D array). For RGB and RGBA images,
Matplotlib supports float32 and uint8 data types. For grayscale, Matplotlib supports
only float32. If your array data does not meet one of these descriptions, you need to
rescale it.

Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it).
Let's render it. In Matplotlib, this is performed using the imshow() function. Here
we'll grab the plot object. This object gives you an easy way to manipulate the plot
from the prompt.

imgplot = plt.imshow(img)

100

150

200

250

300

350

0 100 200 300 400

You can also plot any numpy array.

62 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data
more easily. This is especially useful when making presentations of your data using
projectors - their contrast is typically quite poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We cur-
rently have an RGB image. Since R, G, and B are all similar (see for yourself above
or in your data), we can just pick one channel of our data:

lum_img = img[:, :, 0]

This is array slicing. You can read more in the “Numpy tutorial
<https://docs.scipy.org/doc/numpy/user/quickstart. html>"_.

plt.imshow(lum_img)

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7fcbe34a5b50>

Now, with a luminosity (2D, no color) image, the default colormap (aka lookup table,
LUT), is applied. The default is called viridis. There are plenty of others to choose

2.1. Introductory 63

Matplotlib, Release 3.3.4

from.

plt.imshow(lum_img, cmap="hot")

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7fcbe056cac0>

Note that you can also change colormaps on existing plot objects using the set_cmap ()
method:

imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')

64 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Note: However, remember that in the Jupyter Notebook with the inline backend, you
can't make changes to plots that have already been rendered. If you create imgplot
here in one cell, you cannot call set cmap() on it in a later cell and expect the earlier
plot to change. Make sure that you enter these commands together in one cell. plt
commands will not change plots from earlier cells.

There are many other colormap schemes available. See the list and images of the
colormaps.

Color scale reference

It's helpful to have an idea of what value a color represents. We can do that by adding
a color bar to your figure:

imgplot = plt.imshow(lum_img)
plt.colorbar()

2.1. Introductory 65

../colors/colormaps.html
../colors/colormaps.html

Matplotlib, Release 3.3.4

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.colorbar.Colorbar object at 0x7fcbe352bbb0>

Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast
in a particular region while sacrificing the detail in colors that don't vary much, or
don't matter. A good tool to find interesting regions is the histogram. To create a
histogram of our image data, we use the rist () function.

plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k')

66 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

8000 ~

6000 ~

4000

2000 ~

0.0

Out:

0.2

0.

8 1.0

(array([2.000e+00, 2.000e+00, 3.000e+00, 3.000e+00, 2.000e+00, 2.000e+00,

3.000e+00,
.000e+00,
.100e+01,
.400e+01,
.700e+01,
.060e+02,
.270e+02,
.230e+02,
.000e+01,
.380e+02,
.390e+02,
.280e+02,
.700e+01,
.070e+02,
.240e+02,
.610e+02,
.690e+02,
.160e+02,
.620e+02,
.200e+02,

O WNRFP, P, PP, OFR,RPR P, O P 0NN

1
1
2
2
4
1
1
1
1
1
1
1
9
9
1
1
1
2
3
6

.000e+00,
.000e+01,
.400e+01,
.400e+01,
.600e+01,
.130e+02,
.350e+02,
.160e+02,
.060e+02,
.000e+02,
.160e+02,
.200e+02,
.700e+01,
.800e+01,
.340e+02,
.380e+02,
.710e+02,
.460e+02,
.760e+02,
.410e+02,

7.
1
1
4
8
1
9
1
1
1.
1
1
1
1
1
1
1
2
4
7

000e+00,

.100e+01,
.400e+01,
.000e+01,
.400e+01,
.120e+02,
.800e+01,
.010e+02,
.260e+02,

340e+02,

.330e+02,
.210e+02,
.140e+02,
.040e+02,
.200e+02,
.620e+02,
.820e+02,
.210e+02,
.480e+02,
.440e+02,

9.000e+00,
1.500e+01,
3.100e+01,
2.600e+01,
7.600e+01,
9.000e+01,
1.310e+02,
1.170e+02,
1.040e+02,
1.
1
1
1
1
1
1
1
2
4
7

210e+02,

.180e+02,
.100e+02,
.070e+02,
.120e+02,
.410e+02,
.570e+02,
.980e+02,
.520e+02,
.630e+02,
.120e+02,

7
1
2
5
8
1
1
1
1
1
1
1
1
1
1
1
1
2
5
8

.000e+00, 2.
.400e+01, 2.
.900e+01, 2.
.200e+01, 3.
.900e+01, 8.
.160e+02,
.230e+02,
.000e+02,
.070e+02,
.400e+02,
.080e+02,
.160e+02,
.170e+02,
.110e+02,
.520e+02,
.350e+02,
.970e+02,
.890e+02,
.170e+02,
.330e+02,

O OO WNEFE, P, P, OO P P PP

000e+00,
700e+01,
800e+01,
900e+01,
000e+01,

.090e+02,
.110e+02,
.010e+02,
.110e+02,
.320e+02,
.170e+02,
.180e+02,
.700e+01,
.180e+02,
.360e+02,
.470e+02,
.060e+02,
.450e+02,
.000e+02,
.290e+02,

(continues on next page)

2.1. Introductory

67

Matplotlib, Release 3.3.4

(continued from previous page)

1.061e+03, 1.280e+03, 1.340e+03, 1
2.151e+03, 2.290e+03, 2.440e+03, 2
4.332e+03, 5.584e+03, 6.197e+03, 6
8.196e+03, 7.968e+03, 7.474e+03, 7
9.148e+03, 8.563e+03, 6.747e+03, 6
6.472e+03, 6.268e+03, 2.864e+03, 3
1.270e+02, 9.500e+01, 7.600e+01, 8
5.600e+01, 5.900e+01, 4.000e+01, 4
3.200e+01, 4.300e+01, 4.200e+01, 2
2.200e+01, 1.600e+01, 1.200e+01, 1
1.700e+01, 5.000e+00, 2.100e+01, 1
1.000e+01, 8.000e+00, 8.000e+00, 5
3.000e+00, 7.000e+00, 6.000e+00, 2
3.000e+00, 3.000e+00, 1.000e+00, 1
0.000e+00, 1.000e+00, 3.000e+00, O
2.000e+00, 1.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0.000e+00, 0.000e+00, 0.000e+00, O
0078125 , 0.01171875, 0.0156625
0.01953125, 0.0234375 , 0.02734375,
0.0390625 , 0.04296875, 0.046875 ,
0.05859375, 0.0625 , 0.06640625,
0.078125 , 0.08203125, 0.0859375 ,
0.09765625, 0.1015625 , 0.10546875,
0.1171875 , 0.12109375, 0.125 ,
0.13671875, 0.140625 , 0.14453125,
0.15625 , 0.16015625, 0.1640625 ,
0.17578125, 0.1796875 , 0.18359375,
0.1953125 , 0.19921875, 0.203125 ,
0.21484375, 0.21875 , 0.22265625,
0.234375 , 0.23828125, 0.2421875 ,
0.25390625, 0.2578125 , 0.26171875,
0.2734375 , 0.27734375, 0.28125 ,
0.29296875, 0.296875 , 0.30078125,
0.3125 , 0.31640625, 0.3203125 ,
0.33203125, 0.3359375 , 0.33984375,
0.3515625 , 0.35546875, 0.359375 ,
0.37109375, 0.375 , 0.37890625,
0.390625 , 0.39453125, 0.3984375 ,
0.41015625, 0.4140625 , 0.41796875,
0.4296875 , 0.43359375, 0.4375 ,
0.44921875, 0.453125 , 0.45703125,
0.46875 , 0.47265625, 0.4765625 ,
0.48828125, 0.4921875 , 0.49609375,
0.5078125 , 0.51171875, 0.515625
0.52734375, 0.53125 , 0.53515625,
0.546875 , 0.55078125, 0.5546875 ,

.638e+03,
.758e+03,
.422e+03,
.926e+03,
.074e+03,
.760e+02,
.200e+01,
.200e+01,
.300e+01,
.800e+01,
.300e+01,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00]1),

O OO OO O K, P, P, F 00ONWOFO®®OWOON -

.03125

.740e+03,
.896e+03,
.404e+03,
.460e+03,
.328e+03,
.620e+02,
.200e+01,
.000e+01,
.800e+01,
.000e+00,
.000e+00,
.300e+01,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,

1
3
7
8
5
1
6
3
1
1
1
6.
5
5
1
0
0
0
0
0
0

array ([O0.

.953e+03,
.384e+03,
.181e+03,
.091e+03,
.291e+03,
.180e+02,
.700e+01,
.400e+01,
.900e+01,
.000e+01,
.200e+01,

000e+00,

.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,

, 0.00390625, 0.

.03515625,

H

0

0.05078125,
0.0703125 ,
0.08984375,
0.109375 ,
0.12890625,
0.1484375 ,
0.16796875,
0.1875 ,
0.20703125,
0.2265625 ,
0.24609375,
0.265625
0.28515625,
0.3046875 ,
0.32421875,
0.34375 ,
0.36328125,
0.3828125 ,
0.40234375,
0.421875 ,
0.44140625,
0.4609375 ,
0.48046875,
0.5 ,
0.51953125,
0.5390625 ,
0.55859375,

(el eolNeolNeolNeolNeoNolNolNoNeolNolNoNeoNolNoNoNoNoNoNoNoNeoNeoNeoNeoNoNoNe]

.0546875
.0742187
.09375
.1132812
.1328125
.1523437
.171875
.1914062
.2109375
.2304687
.25
.26956312
.2890625
.3085937
.328125
.3476562
.3671875
.3867187
.40625
.4257812
.4453125
.4648437
.484375
.5039062
.5234375
.5429687
.5625

5,
5,
5,
5,

>

5,

5,
5,
5,
5,
5,
5,
5,

5,

B

(continues on next page)

68

Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

.56640625,
.56859375 ,
.60546875,
.625 ,
.64453125,
.6640625 ,
.68359375,
.703125
. 72265625,
. 7421875 ,
.76171875,
.78125 ,
.80078125,
.8203125 ,
.83984375,
.869375
.87890625,
.8984375 ,
.91796875,
.9375 ,
.95703125,
.9765625 ,
.99609375,

el el eolNeolNeolNeolNolNolNeolNolNoNoNoNoNoNoNoNoNoNoNoNeoNe]

H O O OO O0OO0OO0OO0OO0OO0ODO0ODO0OO0OO0OO0OO0OO0OOO0OOoOOoOOo

.5703125 , 0.57421875,
.58984375, 0.59375 ,
.609375 , 0.61328125,
.62890625, 0.6328125 ,
.6484375 , 0.65234375,
.66796875, 0.671875 ,
.6875 , 0.69140625,
.70703125, 0.7109375 ,
. 7265625 , 0.73046875,
.74609375, 0.75 ,
.765625 , 0.76953125,
.78515625, 0.7890625 ,
.8046875 , 0.80859375,
.82421875, 0.828125
.84375 , 0.84765625,
.86328125, 0.8671875 ,
.8828125 , 0.88671875,
.90234375, 0.90625 ,
.921875 , 0.92578125,
.94140625, 0.9453125 ,
.9609375 , 0.96484375,
.98046875, 0.984375 ,

O OO OO OO ODODODOOOOOOOO OO o

.5678125
.59765625,
.6171875 ,
.63671875,
.65625 >
.67578125,
.6953125 ,
.71484375,
.734375
. 75390625,
.7734375 ,
.79296875,
.8125 ,
.83203125,
.85615625 ,
.87109375,
.890625
.91015625,
.9296875 ,
.94921875,
.96875)
0.

98828125,

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

.58203125,
.6015625 ,
.62109375,
.640625
.66015625,
.6796875 ,
.69921875,
.71875 ,
.73828125,
.7578125 ,
.7T7734375,
.796875
.81640625,
.83569375 ,
.85546875,
.875 ,
.89453125,
.9140625 ,
.933569375,
.953125
.97265625,
.9921875 ,

1, dtype=float32), <BarContainer object of 256 artists>)

Most often, the "interesting" part of the image is around the peak, and you can get
extra contrast by clipping the regions above and/or below the peak. In our histogram,
it looks like there's not much useful information in the high end (not many white things
in the image). Let's adjust the upper limit, so that we effectively "zoom in on" part of
the histogram. We do this by passing the clim argument to imshow. You could also do
this by calling the set_clim() method of the image plot object, but make sure that you
do so in the same cell as your plot command when working with the Jupyter Notebook

- it will not change plots from earlier cells.

You can specify the clim in the call to plot.

imgplot = plt.imshow(lum_img, clim=(0.0, 0.7))

2.1. Introductory

69

Matplotlib, Release 3.3.4

100

150

200

250

300

350

0 100 200 300 400

You can also specify the clim using the returned object

fig = plt.figure()

ax = fig.add_subplot(1l, 2, 1)

imgplot = plt.imshow(lum_img)

ax.set_title('Before')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
ax = fig.add_subplot(l, 2, 2)

imgplot = plt.imshow(lum_img)

imgplot.set_clim(0.0, 0.7)

ax.set_title('After')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')

70 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Before
0 0
100 100
200 200
300 300

0 100 200 300 400 0 100 200 300 400

BT I

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Out:

<matplotlib.colorbar.Colorbar object at 0x7fcbe0af5550>

Array Interpolation schemes

Interpolation calculates what the color or value of a pixel "should" be, according to
different mathematical schemes. One common place that this happens is when you
resize an image. The number of pixels change, but you want the same information.
Since pixels are discrete, there's missing space. Interpolation is how you fill that
space. This is why your images sometimes come out looking pixelated when you blow
them up. The effect is more pronounced when the difference between the original
image and the expanded image is greater. Let's take our image and shrink it. We're
effectively discarding pixels, only keeping a select few. Now when we plot it, that
data gets blown up to the size on your screen. The old pixels aren't there anymore,
and the computer has to draw in pixels to fill that space.

We'll use the Pillow library that we used to load the image also to resize the image.

2.1. Introductory 71

Matplotlib, Release 3.3.4

from PIL import Image

img = Image.open('../../doc/_static/stinkbug.png')
img.thumbnail ((64, 64), Image.ANTIALIAS) # resizes image in-place
imgplot = plt.imshow(img)

Here we have the default interpolation, bilinear, since we did not give imshow() any
interpolation argument.

Let's try some others. Here's "nearest", which does no interpolation.

imgplot = plt.imshow(img, interpolation="nearest")

72 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

and bicubic:

imgplot = plt.imshow(img, interpolation="bicubic")

2.1. Introductory 73

Matplotlib, Release 3.3.4

Bicubic interpolation is often used when blowing up photos - people tend to prefer
blurry over pixelated.

Total running time of the script: (0 minutes 6.890 seconds)

2.1.5 The Lifecycle of a Plot

This tutorial aims to show the beginning, middle, and end of a single visualization
using Matplotlib. We'll begin with some raw data and end by saving a figure of a
customized visualization. Along the way we try to highlight some neat features and
best-practices using Matplotlib.

Note: This tutorial is based on this excellent blog post by Chris Moffitt. It was
transformed into this tutorial by Chris Holdgraf.

74 Chapter 2. Tutorials

http://pbpython.com/effective-matplotlib.html

Matplotlib, Release 3.3.4

A note on the Object-Oriented API vs. Pyplot

Matplotlib has two interfaces. The first is an object-oriented (OO) interface. In this
case, we utilize an instance of azes.Azes in order to render visualizations on an in-
stance of figure.Figure.

The second is based on MATLAB and uses a state-based interface. This is encapsu-
lated in the pyplot module. See the pyplot tutorials for a more in-depth look at the
pyplot interface.

Most of the terms are straightforward but the main thing to remember is that:
* The Figure is the final image that may contain 1 or more Axes.

* The Axes represent an individual plot (don't confuse this with the word "axis",
which refers to the x/y axis of a plot).

We call methods that do the plotting directly from the Axes, which gives us much
more flexibility and power in customizing our plot.

Note: In general, try to use the object-oriented interface over the pyplot interface.

Our data

We'll use the data from the post from which this tutorial was derived. It contains sales
information for a number of companies.

import numpy as np
import matplotlib.pyplot as plt

data = {'Barton LLC': 109438.50,
'Frami, Hills and Schmidt': 103569.59,
'Fritsch, Russel and Anderson': 112214.71,
'Jerde-Hilpert': 112591.43,
'Keeling LLC': 100934.30,
'Koepp Ltd': 103660.54,
'Kulas Inc': 137351.96,
'"Trantow-Barrows': 123381.38,
'White-Trantow': 135841.99,
'Will LLC': 104437.60%}

group_data = list(data.values())

group_names = list(data.keys())

group_mean = np.mean(group_data)

2.1. Introductory 75

Matplotlib, Release 3.3.4

Getting started

This data is naturally visualized as a barplot, with one bar per group. To do this with
the object-oriented approach, we first generate an instance of figure.Figure and azes.
Azes. The Figure is like a canvas, and the Axes is a part of that canvas on which we
will make a particular visualization.

Note: Figures can have multiple axes on them. For information on how to do this,
see the Tight Layout tutorial.

fig, ax = plt.subplots()

1.0

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Now that we have an Axes instance, we can plot on top of it.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

76 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Will LLC
‘e-Trantow
w-Barrows

Kulas Inc
Koepp Ltd
geling LLC
de-Hilpert
Anderson
d Schmidt

larton LLC

T T T T T T T
0 20000 40000 0000 80000 100000 120000 140000

Out:

<BarContainer object of 10 artists>

Controlling the style

There are many styles available in Matplotlib in order to let you tailor your visualiza-
tion to your needs. To see a list of styles, we can use style.

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast',
—'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-
—colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep
—', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-
—poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid',

< 'tableau-colorblind10']

You can activate a style with the following:

2.1. Introductory 7

Matplotlib, Release 3.3.4

plt.style.use('fivethirtyeight')

Now let's remake the above plot to see how it looks:

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

0 20000 40000 60000 80000 100000120000 140000

Out:

<BarContainer object of 10 artists>

The style controls many things, such as color, linewidths, backgrounds, etc.

78 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Customizing the plot

Now we've got a plot with the general look that we want, so let's fine-tune it so that
it's ready for print. First let's rotate the labels on the x-axis so that they show up
more clearly. We can gain access to these labels with the azes.Azes.get_zticklabels()
method:

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()

0 20000 40000 60000 80000 100000120000 140000

If we'd like to set the property of many items at once, it's useful to use the pypiot.
setp () function. This will take a list (or many lists) of Matplotlib objects, and attempt
to set some style element of each one.

fig, ax = plt.subplots()

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

2.1. Introductory 79

Matplotlib, Release 3.3.4

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None, None,,
—None, None, None, None]

It looks like this cut off some of the labels on the bottom. We can tell Matplotlib to
automatically make room for elements in the figures that we create. To do this we set
the autolayout value of our rcParams. For more information on controlling the style,
layout, and other features of plots with rcParams, see Customizing Matplotlib with
style sheets and rcParams.

plt.rcParams.update({'figure.autolayout': True})

fig, ax = plt.subplots()

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

80 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

will L I

White-Trantow _
Trantow-Barrows _

kulas Inc [

Koepp Ltd |

Keeling LLC [

Jerde-titpert |

Fritsch, Russel and Anderson _

Frami, Hills and Schmidt _

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None, None,,
—None, None, None, None]

Next, we add labels to the plot. To do this with the OO interface, we can use the
Artist.set () method to set properties of this Axes object.

fig, ax = plt.subplots()

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

2.1. Introductory 81

Matplotlib, Release 3.3.4

Company Revenue

Will LLC

White-Trantow
Trantow-Barrows

Kulas Inc

Koepp Ltd

Keeling LLC

Jerde-Hilpert

Fritsch, Russel and Anderson
Frami, Hills and Schmidt
Barton LLC

Company

Total Revenue

Out:

[(-10000.0, 140000.0), Text(0.5, 44.08838834764833, 'Total Revenue'), Text(43.
—999999999999986, 0.5, 'Company'), Text(0.5, 1.0, 'Company Revenue')]

We can also adjust the size of this plot using the pyplot.subplots() function. We can
do this with the figsize kwarg.

Note: While indexing in NumPy follows the form (row, column), the figsize kwarg
follows the form (width, height). This follows conventions in visualization, which
unfortunately are different from those of linear algebra.

fig, ax = plt.subplots(figsize=(8, 4))

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

82 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Company Revenue

Will LLC
White-Trantow
Trantow-Barrows

N

c Kulas Inc
4 Koepp Ltd
= Keeling LLC
=] Jerde-Hilpert
O Fritsch, Russel and Anderson

Frami, Hills and Schmidt
Barton LLC

Total Revenue

Out:

[(-10000.0, 140000.0), Text(0.5, 43.823223304703376, 'Total Revenue'), Text(43.
—999999999999986, 0.5, 'Company'), Text(0.5, 1.0, 'Company Revenue')]

For labels, we can specify custom formatting guidelines in the form of functions. Be-
low we define a function that takes an integer as input, and returns a string as an
output. When used with 4zis.set_major_formatter OT Azis.set_minor_formatter, they
will automatically create and use a ticker. FuncFormatter class.

For this function, the x argument is the original tick label and pos is the tick position.
We will only use x here but both arguments are needed.

def currency(x, pos):
"""The two args are the wvalue and tick position”""

if x >= 1le6:

s = '${:1.1f/M"' .format (x*1e-6)
else:

s = '${:1.0f}K"' . format (x*1e-3)
return s

We can then apply this function to the labels on our plot. To do this, we use the xaxis
attribute of our axes. This lets you perform actions on a specific axis on our plot.

fig, ax = plt.subplots(figsize=(6, 8))
ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(x1lim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')
ax.xaxis.set_major_formatter(currency)

2.1. Introductory 83

Matplotlib, Release 3.3.4

Company Revenue

Will LLC

White-Trantow

Trantow-Barrows

Kulas Inc
=
% Koepp Ltd
o
£ .
o Keeling LLC
O
Jerde-Hilpert

Fritsch, Russel and Anderson

Frami, Hills and Schmidt

Barton LLC

%
%

iy
2%
%

iy JG

Total Revenue

84 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Combining multiple visualizations

It is possible to draw multiple plot elements on the same instance of azes.4dzes. To do
this we simply need to call another one of the plot methods on that axes object.

fig, ax = plt.subplots(figsize=(8, 8))
ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

Add a vertical line, here we set the style in the function call
ax.axvline(group_mean, ls='--', color='r')

Annotate mew companies
for group in [3, 5, 8]:
ax.text (145000, group, "New Company", fontsize=10,
verticalalignment="center")

Now we move our title up since it's getting a little cramped
ax.title.set(y=1.05)

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

ax.xaxis.set_major_formatter(currency)

ax.set_xticks ([0, 25e3, 50e3, 75e3, 100e3, 125e3])

fig.subplots_adjust(right=.1)

plt.show()

2.1. Introductory 85

Matplotlib, Release 3.3.4

Company Revenue
I

Will LLC |

White-Trantow

New Company

Trantow-Barrows

Kulas Inc
= I
S Koepp Ltd [New Company
o
= . |
o Keeling LLC
O |
: |
Fritsch, Russel and Anderson I
. . |
Frami, Hills and Schmidt I
|
Barton LLC |
|
S S T S
O “ Q “ S) \p)
T QT P o

Total Revenue

Saving our plot

Now that we're happy with the outcome of our plot, we want to save it to disk. There
are many file formats we can save to in Matplotlib. To see a list of available options,
use:

print (fig.canvas.get_supported_filetypes())

Out:

86 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

{'eps': 'Encapsulated Postscript', 'jpg': 'Joint Photographic Experts Group', 'jpeg':
—'Joint Photographic Experts Group', 'pdf': 'Portable Document Format', 'pgf': 'PGF
—code for LaTeX', 'png': 'Portable Network Graphics', 'ps': 'Postscript', 'raw': 'Raw,
—RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz':

- 'Scalable Vector Graphics', 'tif': 'Tagged Image File Format', 'tiff': 'Tagged Image,
—File Format'}

We can then use the figure.Figure.savefig() in order to save the figure to disk. Note
that there are several useful flags we show below:

* transparent=True makes the background of the saved figure transparent if the
format supports it.

* dpi=80 controls the resolution (dots per square inch) of the output.

* bbox_inches="tight" fits the bounds of the figure to our plot.

Uncomment this line to save the figure.
fig.savefig('sales.png', transparent=False, dpt=80, bboz_inches="tight")

Total running time of the script: (0 minutes 2.760 seconds)

2.1.6 Customizing Matplotlib with style sheets and rcParams

Tips for customizing the properties and default styles of Matplotlib.

Using style sheets

The style package adds support for easy-to-switch plotting "styles" with the same
parameters as a matplotlib rc file (which is read at startup to configure Matplotlib).

There are a number of pre-defined styles provided by Matplotlib. For example, there's
a pre-defined style called "ggplot", which emulates the aesthetics of ggplot (a popular
plotting package for R). To use this style, just add:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib as mpl

from cycler import cycler
plt.style.use('ggplot')

data = np.random.randn(50)

To list all available styles, use:

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast',

— 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-
—colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn—dark&??@l?ueéég%ggggdggie)
—', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-
2?PPSqﬁ{}0diﬁﬁiF%rn_talk" 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 87
— 'tableau-colorblind10']

https://github.com/matplotlib/matplotlib/tree/master/lib/matplotlib/mpl-data/stylelib
https://ggplot2.tidyverse.org/
https://www.r-project.org/

Matplotlib, Release 3.3.4

(continued from previous page)

|

Defining your own style
You can create custom styles and use them by calling style.use with the path or URL
to the style sheet.

For example, you might want to create ./images/presentation.mplstyle with the fol-
lowing:

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16

Then, when you want to adapt a plot designed for a paper to one that looks good in a
presentation, you can just add:

>>> import matplotlib.pyplot as plt
>>> plt.style.use('./images/presentation.mplstyle')

Alternatively, you can make your style known to Matplotlib by placing your
<style-name>.mplstyle file into mpl_configdir/stylelib. You can then load your cus-
tom style sheet with a call to style.use(<style-name>). By default mpl_configdir
should be ~/.config/matplotlib, but you can check where yours is with matplotiib.
get_configdir(); you may need to create this directory. You also can change the
directory where Matplotlib looks for the stylelib/ folder by setting the MPLCONFIGDIR
environment variable, see matplotlib configuration and cache directory locations.

Note that a custom style sheet in mpl_configdir/stylelib will override a style sheet
defined by Matplotlib if the styles have the same name.

Once your <style-name>.mplstyle file is in the appropriate mpl_configdir you can spec-
ify your style with:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(<style-name>)

88 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Composing styles

Style sheets are designed to be composed together. So you can have a style sheet
that customizes colors and a separate style sheet that alters element sizes for pre-
sentations. These styles can easily be combined by passing a list of styles:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(['dark_background', 'presentation'])

Note that styles further to the right will overwrite values that are already defined by
styles on the left.

Temporary styling

If you only want to use a style for a specific block of code but don't want to change
the global styling, the style package provides a context manager for limiting your
changes to a specific scope. To isolate your styling changes, you can write something
like the following:

with plt.style.context('dark_background'):
plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')
plt.show()

2.1. Introductory 89

Matplotlib, Release 3.3.4

0.00

—0.25

—0.50

—0.75

2.1.7 Matplotlib rcParams
Dynamic rc settings

You can also dynamically change the default rc settings in a python script or inter-
actively from the python shell. All of the rc settings are stored in a dictionary-like
variable called matplotlib.rcParams, which is global to the matplotlib package. rc-
Params can be modified directly, for example:

mpl.rcParams['lines.linewidth'] = 2

mpl.rcParams['lines.linestyle']
plt.plot(data)

90 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

I I
: : RN S
| . Ly o Iy
' 1 h AN
| I I LN
\ L K r‘,'”u Yono \
1y, ! i noj oy
| [I 11 1 T
L « a! "‘lllll"l "'1' ‘n':“
o- 1 5y Vet w Tond gy
oy 1l N TR
! WY HERT I <1y
LAY LR ' Iy
LYo u i !
-1 v i ?:I
H !
i! i
! i
. ."
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7fcbe07537£0>]

Note, that in order to change the usual plot color you have to change the prop cycle
property of axes:

mpl.rcParams['axes.prop_cycle'] = cycler(color=['r', 'g', 'b', 'y'])
plt.plot(data) # first color is red

2.1. Introductory 91

Matplotlib, Release 3.3.4

I I
1 \ in g 1
| I HYINHH /!
! + n TN
| x noooret Y ooy
| I | n
‘ A R R A
I I s h I T
0- 1 1 ﬂ' \l l"l. Ht 1 .I' '
1 A n, ot fPhp o
v Il " TR
bag vy ""; 1 ' ol T
vy y vy
_1- I
! 1 R ! ?II
H !
I
1! I
Tl
5 r"
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7fcbel8e39a0>]

Matplotlib also provides a couple of convenience functions for modifying rc settings.

matplotlib.rc can be used to modify multiple settings in a single group at once, using
keyword arguments:

mpl.rc('lines', linewidth=4, linestyle='-."')
plt.plot(data)

92 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Out:

[<matplotlib.lines.Line2D object at 0x7fcbel839250>]

matplotlib.rcdefaults will restore the standard Matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see
matplotlib.rcsetup for details.

The matplotlibrec file

Matplotlib uses matplotlibrc configuration files to customize all kinds of properties,
which we call 'rc settings' or 'rc parameters'. You can control the defaults of almost
every property in Matplotlib: figure size and DPI, line width, color and style, axes,
axis and grid properties, text and font properties and so on. When a URL or path
is not specified with a call to style.use('<path>/<style-name>.mplstyle'), Matplotlib
looks for matplotlibre in four locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific cus-
tomizations that you do not want to apply elsewhere.

2. $MATPLOTLIBRC if it is a file, else $MATPLOTLIBRC/matplotlibre.

2.1. Introductory 93

Matplotlib, Release 3.3.4

3. It next looks in a user-specific place, depending on your platform:

* On Linux and FreeBSD, it looks in .config/matplotlib/matplotlibrc (Or
$XDG_CONFIG_HOME/matplotlib/matplotlibrc) if you've customized your envi-
ronment.

* On other platforms, it looks in .matplotlib/matplotlibrec.
See matplotlib configuration and cache directory locations.

4. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is something like /usr/
lib/python3.7/site-packages on Linux, and maybe C:\Python37\Lib\site-packages
on Windows. Every time you install matplotlib, this file will be overwritten, so
if you want your customizations to be saved, please move this file to your user-
specific matplotlib directory.

Once a matplotlibrc file has been found, it will not search any of the other paths.

To display where the currently active matplotlibrc file was loaded from, one can do
the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname ()
'/home/foo/.config/matplotlib/matplotlibrc’

See below for a sample matplotlibre file.

A sample matplotlibrc file

MATPLOTLIBRC FURMAT

NOTE FOR END USERS: DO NOT EDIT THIS FILE!

##

This ©1s a sample matplotlib configuration file - you can find a copy
of it on your system in site-packages/matplotlib/mpl-data/matplotlibre
(which related to your Python installation location).

##

You should find a copy of it on your system at

site-packages/matplotlib/mpl-data/matplotlibre (relative to your Python
installation location). DO NOT EDIT IT!

##

If you wish to change your default style, copy this file to one of the
following locations

uniz/linuc:

##t $HOME/ . config/matplotlib/matplotlibre OR

$XDG_CONFIG_HOME/matplotlib/matplotlibre (if $XDG_CONFIG_HOME is set)
other platforms:

##t $HOME/ . matplotlib/matplotlibre

and edit that copy.

##

See https://matplotlib.org/users/customizing.html#the-matplotlibre-file
for more details on the paths which are checked for the configuration file.

(continues on next page)

94 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Blank lines, or lines starting with a comment symbol, are ignored, as are

tratling comments.

key: wval # optional

Other lines must have the format:

comment

Formatting: Use PEP8-like style (as enforced in the rest of the codebase).
All lines start with an additional '#', so that removing all leading '#'s
yields a wvalid style file.

Colors: for the color walues below, you can etther use

a matplotlidb color
an rgb tuple, such
a hex string, such
a scalar grayscale
a legal html color

Matplotlidb configuration

BACKENDS
LINES

PATCHES
HATCHES
BOXPLOT

FONT

TEXT

LaTeX

AXES

DATES

TICKS

GRIDS

LEGEND

FIGURE

IMAGES

CONTOUR PLOTS
ERRORBAR PLOTS
HISTOGRAM PLOTS
SCATTER PLOTS
AGG RENDERING
PATHS

SAVING FIGURES

string, such as v, k, or b
as (1.0, 0.5, 0.0)

as ffOOff

intensity such as 0.75
name, e.g., red, blue, darkslategray

are currently divided into following parts:

INTERACTIVE KEYMAPS

ANIMATION

CONFIGURATION BEGINS HERE

##
##
##
##
##
##

F A A A A A HHFAAAAA A A A A K HHHAAAAAAAA A K A A AAAAAAA A HHHAAAA A e K
* BACKENDS
A HHHHF A A A A A A A A A A A KKK K HFAAAAA A A A A A A A K K H FF A A A A A A A A A A A A HF A A A A A e e e e e
The default backend. If
backend from the following list is used:
MacOSX Qt5Agg9 Gtk3Agg TkAgqg WxrAgg Agg

*

you omit this parameter, the first working

(continues on next page)

2.1.

Introductory

95

Matplotlib, Release 3.3.4

(continued from previous page)

Other choices include:

@t5Cairo GTK3Cairo TkCairo WxCairo Cairo
Gt4Agg Qt4Cairo Wxr # deprecated.
PS PDF SVG Template

You can also deploy your own backend outside of matplotlid by referring to
the module name (which must be in the PYTHONPATH) as 'module://my_backend'.
#backend: Agg

The port to use for the web server in the WebAgg backend.
#webagg.port: 8988

The address on which the WebAgg web server should be reachable
#webagg.address: 127.0.0.1

If webagg.port ts unavailable, a number of other random ports will
be tried until one that s available is found.
#webagg.port_retries: 50

When True, open the webbrowser to the plot that s shown
#webagg.open_in_browser: True

If you are running pyplot inside a GUI and your backend choice

conflicts, we will automatically try to find a compatible one for
you 1f backend_fallback is True

#backend_fallback: True

#interactive: False
#toolbar: toolbar2 # {None, toolbar2, toolmanager}
#timezone: urc # a pytz timezone string, e.g., US/Central or Europe/Paris

B HARAK A AAA A IA A A A A A FAIA I A AT A A A AR A AR A KA AR A KK KA A K
* LINES *
T H KA KR ARANK AR AR A KR AR A KRR AN KRR AH AT KT RA AN AR A A K FRAK AN KR AH A KK
See https://matplotlib.org/api/artist_api.html#module-matplotlsd. lines

for more information on line properties.

#lines. linewidth: 1.5 # line width in points

#lines.linestyle: - # solid line

#lines.color: co # has no affect on plot(); see azes.prop_cycle
#lines.marker: None # the default marker
#lines.markerfacecolor: auto # the default marker face color
#lines.markeredgecolor: auto # the default marker edge color
#lines.markeredgewidth: 1.0 # the line width around the marker symbol
#lines.markersize: 6 # marker size, in points
#lines.dash_joinstyle: round # {miter, round, bevel}
#lines.dash_capstyle: butt # {butt, round, projectingkt
#lines.solid_joinstyle: round # {miter, round, bevell}t
#lines.solid_capstyle: projecting # {butt, round, projectingt
#lines.antialiased: True # render lines in antialiased (no jaggies)

The three standard dash patterns. These are scaled by the linewtidth.

(continues on next page)

96 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

#lines.dashed_pattern: 3.7, 1.6
#lines.dashdot_pattern: 6.4, 1.6, 1, 1.6
#lines.dotted_pattern: 1, 1.65
#lines.scale_dashes: True

#markers. fillstyle: full # {full, left, right, bottom, top, nonel
#pcolor.shading : flat

FEHE ook o o ok o e e e e e e e o o o o o o o e e e e e e e e o o o o ok o o e e e e e e e e o o o ok o o o e e e e e e e o o o ok o o o K e e e o o o o ok ok oK

* PATCHES *
i T T e e 2y

Patches are graphical objects that fill 2D space, like polygons or circles.
See https://matplotlib.org/api/artist_api.html#module-matplotlib.patches
for more information on patch properties.

#patch. linewidth: 1 # edge width in points.

#patch. facecolor: co

#patch.edgecolor: black # if forced, or patch is not filled

#patch. force_edgecolor: False # True to always use edgecolor
#patch.antialiased: True # render patches in antialiased (no jaggties)

FEHE ok ok o ok o o o o oK o o o o o o K o e o e o e o K oK o o oK o o e ok o o e o e oK e o e o o o o o o o oK K o e o e o ke ok ke o ok o oK oK oK o ok oK ok o ok o ok K

* HATCHES *
FEEE ok Ao oA o A oA A A A H A A A A A A A A A A A A oA A A A A A A H KA K
#hatch.color: black

#hatch. linewidth: 1.0

FEHE ook o o o e e e e e e e e o o o o o o o e e e e e e e e o o o o o e e e e e e e e e o o o o o o e e e e e e e e e o o o o o o K e e e e e e o o o ok ok

* BOXPLOT *
FHHE K e e o oo He e e e e e e A A HHHe e e e e e e A HHHe e e e e e e e oA HHeHe e e e e e e A A A HHHe e e e e e e oA KA K

#bozxzplot.notch: False
#boxplot.vertical: True
#boxplot.whiskers: 1.5

#boxplot.bootstrap: None
#boxplot.patchartist: False

#boxplot.showmeans: False
#boxzplot.showcaps: True
#boxplot.showbozx: True
#boxplot.showfliers: True
#boxplot.meanline: False

#boxplot. flierprops.color: black
#boxplot. flierprops.marker: 0

#boxplot. flierprops.markerfacecolor: mnone
#boxplot. flierprops.markeredgecolor: black
#boxplot. flierprops.markeredgewtdth: 1.0

#bozxplot. flierprops.markersize: 6
#boxplot. flierprops. linestyle: none
#boxplot. flierprops. linewidth: 1.0

(continues on next page)

2.1. Introductory 97

Matplotlib, Release 3.3.4

(continued from previous page)

#boxplot.boxprops.color: black
#boxplot.boxprops. linewidth: 1.0
#boxplot.boxprops. linestyle: -

#boxplot.whiskerprops.color: black
#boxzplot.whiskerprops.linewidth: 1.0
#boxplot.whiskerprops. linestyle: -

#boxplot.capprops.color: black
#boxplot.capprops. linewidth: 1.0
#boxplot.capprops.linestyle: -

#boxplot.medianprops.color: C1
#boxplot.medianprops. linewidth: 1.0
#boxplot.medianprops. linestyle: -

#boxplot.meanprops.color: c2e

#boxplot.meanprops.marker:

#boxplot.meanprops.markerfacecolor: C2
#boxplot.meanprops.markeredgecolor: C2
#boxplot.meanprops.markersize: 6
#boxplot.meanprops. linestyle: -
#boxplot.meanprops. linewidth: 1.0

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

A A A A A A A A A HH A A A A A F A A A A H A A A F A e F A A S A A e HH A S H A A S F A A A A H K
* FONT *
Fe e e H A A A A A e H A A A A A e H A A A A A A H A A e H A A HH A e HeH A A e H A A e H A A H A
The font properties used by “text.Text .

See https://matplotlib.org/api/font_manager_api.html for more information
on font properties. The 6 font properties used for font matching are

given below with their default wvalues.

The font.family property has five values:
- 'serif' (e.g., Times),
- 'sans-serif' (e.g., Helwetica),
- 'cursive' (e.g., Zapf-Chancery),
- 'fantasy' (e.g., Western), and
- 'monospace’ (e.g., Courtier).
Each of these font families has a default list of font nmames in decreasing
order of priority assoctated with them. When text.usetex is False,
font. family may also be one or more concrete font names.

The font.style property has three walues: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is mnot
present.

The font.vartant property has two values: mormal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps ts equivalent
to using a font size of 'smaller', or about 83%) of the current font

(continues on next page)

98

Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

size.

##

The font.weight property has effectively 13 walues: normal, bold,

bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as

400, and bold is 700. bolder and lighter are relative wvalues with
respect to the current weight.

##

The font.stretch property has 11 wvalues: ultra—-condensed,

extra-condensed, condensed, semi-condensed, mormal, semi-expanded,

expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.

##

The font.size property is the default font size for text, given in pts.
10 pt is the standard value.

##

Note that font.size controls default text sizes. To configure

spectal text sizes tick labels, azes, labels, title, etc, see the rc
settings for azes and ticks. Special text sizes can be defined

relative to font.size, using the following wvalues: zz-small, z-small,
small, medium, large, z—-large, zxz—-large, larger, or smaller

#font. family: sans-serif
#font.style: normal
#font.variant: normal
#font.weight: mnormal
#font.stretch: normal
#font.size: 10.0

#font.serif: DejaVu Serif, Bitstream Vera Sertif, Computer Modern Roman, New Century,
—Schoolbook, Century Schoolbook L, Utoptia, ITC Bookman, Bookman, Nimbus Roman No9 L,
—Times New Roman, Times, Palatino, Charter, serif

#font.sans-serif: DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans Serif, Luciday
—Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif

#font.cursive: Apple Chancery, Textile, Zapf Chancery, Sand, Script MT, Felipa,
— Ccurstve
#font. fantasy: Comic Neue, Comic Sans MS, Chicago, Charcoal, ImpactWestern, Humory,

—Sans, zkcd, fantasy
#font.monospace: DejaVu Sans Mono, Bitstream Vera Sans Mono, Computer Modern Typewriter,
— Andale Mono, Nimbus Mono L, Courier New, Courier, Fized, Terminal, monospace

B A AA A A A A e A A e S F A e F A A e FH A e S F A A e F A A e A A A A F A A A S F A e A K K
* TEXT *
THE A A A A A A A A HE A HE A A HFE A HE A A H A A A A A A A A A A A A A H A KK
The text properties used by “text.Text’.

See https://matplotlib.org/api/artist_api.html#module-matplotlad. text

for more information on text properties

#text.color: black

FEHE ook o o o o o e o o e e o o e e o e e e o e e e o o e S o o e o o e e o e e S o o e S o e e o o e e o e e e o e e e o e o o e o o KK ok K Kk K K

(continues on next page)

2.1. Introductory 99

Matplotlib, Release 3.3.4

(continued from previous page)

* LaTeX *
FHHE KA A A A A A A AAAA A A A e e e e H KA A AAA A A A e e e A A A AAA A A A A KA A A A KK
For more information on LaTex properties, see
https://matplotlib.org/tutorials/text/usetex. html
#text.usetex: False # use latex for all text handling. The following fonts

are supported through the usual Tc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans sertif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list
#text.latex.preamdble: # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
text.latex.preamble is a single line of LaTeX code that
will be passed on to the LaTeX system. It may contain
any code that is wvalid for the LaTeX "preamble”, i.e.
between the "\documentclass" and "\begin{document}"
statements.
Note that 2t has to be put on a single line, which may
become quite long.
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicz,
typelcm, textcomp.
Adobe Postscript (PSSNFS) font packages may also be
loaded, depending on your font settings.

HOWH R R R R R

FHORH RO R R OW WO R R R W™

FreeType hinting flag ("foo" corresponds to FT_LOAD FOO); may be one of the

following (Proprietary Matplotlib-specific synonyms are given in parentheses,

but their use is discouraged):

- default: Use the font's native hinter if possible, else FreelType's auto-hinter.
("either" is a synonym).

- no_autohint: Use the font's native hinter if posstible, else don't hint.

("native" s a synonym.)

- force_autohint: Use FreeType's auto-hinter. ("auto" is a synonym.)

— no_hinting: Disable hinting. ("none"” is a synonym.)

#text.hinting: force_autohint

#text.hinting_ factor: 8 # Specifies the amount of softness for hinting in the

horizontal direction. A wvalue of 1 will hint to full

pizels. A walue of 2 will hint to half pizels etc.
#text.kerning_factor : O # Specifies the scaling factor for kerning values. This

15 provided solely to allow old test images to Temain

unchanged. Set to 6 to obtain previous behavior. Values

other than O or 6 have no defined meaning.
#text.antialiased: True # If True (default), the text will be antialiased.

This only affects the Agg backend.

The following settings allow you to select the fonts in math mode.

(continues on next page)

100 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

#mathtext. fontset: dejavusans # Should be 'dejavusans' (default),
'dejavusertif', 'cm' (Computer Modern), 'stiz',
'stizsans' or 'custom' (unsupported, may go
away in the future)
"mathtext. fontset: custom" ts defined by the mathtext.bf, .cal, .7t,
settings which map a TeX font name to a fontconfig font pattern. (These
settings are not used for other font sets.)
#mathtext.bf: sans:bold
#mathtext.cal: cursive
#mathtext.it: sans:italic
#mathtext.rm: sans
#mathtext.sf: sans
#mathtext.tt: monospace
#mathtext. fallback: cm # Select fallback font from ['cm' (Computer Modern), 'stiz'
'stizsans'] when a symbol can not be found in one of the
custom math fonts. Select 'None' to mot perform fallback
and replace the missing character by a dummy symbol.
#mathtext.default: it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

!

B KAAAAAAA A AT A AAAAAAA A e e HHAAAAA A A A A e e A A A AAAAAA A A HAAA A KK
* AXES *
B AAAAAA A A A A HHHFAAAAAAAA A A A KK HHH A A A A A A A A A A A A He K e F A A A A A A A A A A A AN e e HFF A A A A e o
Following are default face and edge colors, default tick sizes,

default fontsizes for ticklabels, and so on. See

https://matplotlib.org/api/azes_api.html#module-matplotlib.azes

#azes. facecolor: white # azxzes background color
#azes.edgecolor: black # axzes edge color
#azes. linewidth: 0.8 # edge linewidth
#azes.grid: False # display grid or not
#azes.grid.azTis: both # which axis the grid should apply to
#azes.grid.which: major # gridlines at {major, minor, both} ticks
#azes.titlelocation: center # alignment of the title: {left, right, center}
#azes.titlesize: large # fontsize of the azes title
#azes.titleweight: normal # font weight of title
#azes.titlecolor: auto # color of the azes title, auto falls back to

text.color as default wvalue
#azes.titley: None # position title (azes relative units). None implies auto
#azes.titlepad: 6.0 # pad between axes and title in points
#azes. labelsize: medium # fontsize of the = any y labels
#azes.labelpad: 4.0 # space between label and azis
#azes. labelweight: normal # weight of the = and y labels
#azes.labelcolor: black
#azes.azxisbelow: line draw azis gridlines and ticks:

- below patches (True)
- above patches but below lines ('line’)
- above all (False)

B OWH R R

(continues on next page)

2.1. Introductory 101

Matplotlib, Release 3.3.4

(continued from previous page)

#azxzes. formatter.limits: -5, 6 # use scientific notation <¢f logl0
of the azts range is smaller than the
first or larger than the second
#azes. formatter.use_locale: False # When True, format tick labels
according to the user's locale.
For example, use ',' as a decimal
separator in the fr_FR locale.
#azes. formatter.use_mathtext: False # When True, use mathtext for scientific
notation.
#azes. formatter.min_exponent: O # minimum exponent to format in scientific notation
#azes. formatter.useoffset: True # If True, the tick label formatter
will default to labeling ticks relative
to an offset when the data range is
small compared to the minimum absolute
value of the data.
#azes. formatter.offset_threshold: 4 # When useoffset ts True, the offset
will be used when 1t can rTemove
at least this number of significant
digits from tick labels.

#azes.spines. left: True # display axzis spines
#azes.spines.bottom: True
#azxes.spines.top: True

#azes.spines.right: True

#azes.unicode_minus: True # use Unicode for the minus symbol rather than hyphen. See
https://en.wikipedia.org/wiki/Plus_and_minus_signs

—#Character_codes
#azes.prop_cycle: cycler('color', ['1f77b4', 'ff7f0e', '2cal2c', 'd62728', '9467bd’,
— '8cb64b ', 'e377c2', 'TfTfIf', 'becbd22', '17becf'])

color cycle for plot lines as list of string colorspecs:

single letter, long mame, or web-style hex

As opposed to all other paramters in this file, the color

values must be enclosed in quotes for this parameter,

e.g. "1f7704', instead of 1f77b4.

See also https://matplotlib.org/tutorials/intermediate/color_cycle.
—html

for more details on prop_cycle usage.
#azes.autolimit_mode: data # How to scale azes limits to the data. By using:

- "data" to use data limits, plus some margin
- "round_numbers" move to the mearest "round" number
#azes.zmargin: .05 # = margin. See Tazes.Azes.margins’
#azes.ymargin: .05 # y margin. See “azes.Azes.margins’
#polarazes.grid: True # display grid on polar azxes
#azes3d.grid: True # display grid on 3d azes

FEHE ook o o ok o e e e e e o e o o o o o o o o e e e e e e e o o o o o o o e e e e e e e e o o o o ok o K e e e e e e e o o o ok o o o K e e e o o o o ok ok K

* AXIS *
FEHE kAo oo KA A A A A KA A KA KA KA KA KA KA KA KA KA KA A KA KA KA KKK A KKK

#zaxzis. labellocation: center # alignment of the zmazis label: {left, right, center}

(continues on next page)

102 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

#yazis.labellocation: center # alignment of the yazis label: {bottom, top, center}

##
##
##
##
##
##
##
##
##
##
##

#date.
#date.
#date.
#date
#date.
#date.
#date.

The reference date for Matplotlidb's

{'year': 365,

autoformatter.
autoformatter.
autoformatter.
.autoformatter.
autoformatter.
autoformatter.
autoformatter.

"month’:

year:
month:
day:
hour:
minute:
second:

K K ok o o o o o o o o o o o o ok oK ok Ak o oK oK o ok o o oK oK oK oK Ak Ak K o oK oK o o o oK oK oK oK oK Ak o o o oK oK oK o o oK oK oK oK oK Ak o o oK oK ok o o ok ok ok ok ok ok Kk ok K

* DATES
A A A A A KA A KA A KA A KA A A A A K e A KA A A A e A A A A A KA KA A KA KA A K e A KA A KA K

*

These control the default format strings used in AutoDateFormatter.
Any valid format datetime format string can be used (see the python
“datetime” for detatls).

For example, by using:

- '"Z%x' will use the locale date Tepresentation

- '"Z%X" will use the locale time representation

- '"Z%c’ will use the full locale datetime representation

These wvalues map to the scales:
30,

VA%

AY-Jim
AY=Jm=7,d
sm=yd JH
na JH: M
JH:JM: %S

microsecond: JM:}S.%f

'day': 1,

"hour': 1/24, 'minute': 1 / (24 * 60)F

internal date representation

See https://matplotlib.org/examples/ticks_and_spines/date_precision_and_epochs.py
#date.epoch: 1970-01-01T00:00:00

FEHE Kok e ok o ok o o o o oK o o o o o o e o K o e o K oK K o o o oK o oK o o K o e o e ok e o e o K o oK o ok oK oK K ok e o e o ke ok K o ok o ok oK oK o ok oK oK ok ok ok ok K

* TICKS
FEHE ook o o o e e e e e e e e o o o o o o o e e e e e e e e o o o o o e e e e e e e e e o o o o o o e e e e e e e e e o o o o o o K e e e e e e o o o ok ok

*

See https://matplotlib.org/api/azis_api.html#matplotlidb.azts. Tick
#xtick.top: False # draw ticks on the top side
#zxtick.bottom: True # draw ticks on the bottom side
#xtick.labeltop: False # draw label on the top
#zxtick. labelbottom: True # draw label on the bottom
#xrtick.major.size: 3.5 # major tick stize in points
#zrtick.minor.size: 2 # minor tick stize in points
#zxtick.major.width: 0.8 # major tick width in points
#zxtick.minor.width: 0.6 # minor tick width in points
#zxtick.major.pad: 3.5 # distance to major tick label in points
#zrtick.minor.pad: 3.4 # distance to the minor tick label in points
#xtick.color: black # color of the tick labels
#zxtick. labelsize: medium # fontsize of the tick labels
#zrtick.direction: out # direction: {in, out, inoutl}t
#zrtick.minor.visible: False # visibility of minor ticks on T—axris
#xtick.major.top: True # draw T azis top major ticks
#xtick.major.bottom: True # draw = azis bottom major ticks
#xtick.minor.top: True # draw x= azis top minor ticks
#zxtick.minor.bottom: True # draw = azis bottom minor ticks
#zxtick.alignment: center # alignment of xzticks

(continues on next page)
2.1. Introductory 103

Matplotlib, Release 3.3.4

(continued from previous page)

#ytick.left: True # draw ticks on the left side
#ytick.right: False # draw ticks on the right stde

#ytick. labelleft: True # draw tick labels on the left side
#ytick. labelright: False # draw tick labels on the right side
#ytick.major.size: 3.5 # major tick size im points
#ytick.minor.size: 2 # minor tick size in points
#ytick.magjor.width: 0.8 # major tick width in points
#ytick.minor.width: 0.6 # minor tick width in points
#ytick.major.pad: 3.5 # distance to major tick label in points
#ytick.minor.pad: 3.4 # distance to the minor tick label in points
#ytick.color: black # color of the tick labels

#ytick. labelsize: medium # fontsize of the tick labels
#ytick.direction: out # direction: {in, out, inoutt
#ytick.minor.visible: False # wvisibility of minor ticks on y—-axtis
#ytick.major.left: True # draw y azis left major ticks
#ytick.major.right: True # draw y azis right major ticks
#ytick.minor.left: True # draw y azis left minor ticks
#ytick.minor.right: True # draw y azxts rTight minor ticks
#ytick.alignment: center_baseline # alignment of yticks

FHHE oK Ao S o S oA S e A e A S A A e o A e A e oA A A e A S A A A A e A S A A e oA e A A A A KA A KK

* GRIDS *
T A A A A A A A A A e HE A A e e HE A A e HeHE A e HeFE A e H A A e H A A e A A H A A H A A e A A e e H A KK
#grid.color: bob0Ob0 # grid color

#grid.linestyle: - # solzd

#grid. linewidth: 0.8 # in points

#grid.alpha: 1.0 # transparency, between 0.0 and 1.0

FHHE KA oA oo e e e oA e e oA e Ao e e oA e e e o e e e oA e e e o e e e oA e e oo e e e o e e e oo e e e o e e e oo e e e o e e o
* LEGEND *
i T T S e 2y

#legend.loc: best
#legend. frameon: True # if True, draw the legend on a background patch
#legend. framealpha: 0.8 # legend patch transparency
#legend. facecolor: tnherit # inherit from azes.facecolor; or color spec
#legend.edgecolor: 0.8 # background patch boundary color
#legend. fancybozx: True # if True, use a rounded boxz for the

legend background, else a rectangle
#legend. shadow: False # if True, give background a shadow effect
#legend.numpoints: 1 # the number of marker points in the legend line
#legend.scatterpoints: 1 # number of scatter points
#legend.markerscale: 1.0 # the relative size of legend markers vs. original
#legend. fontsize: medium
#legend.title_fontsize: None # None sets to the same as the default azes.

Dimensions as fraction of fontsize:

#legend.borderpad: 0.4 # border whitespace

#legend. labelspacing: 0.5 # the vertical space between the legend entries
#legend.handlelength: 2.0 # the length of the legend lines

(continues on next page)

104 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

#legend.handleheight: O
#legend.handletextpad: 0
#legend.borderazespad: 0.
#legend.columnspacing: 2

FEHE A KA A A AA KA A KA A KA KK

* FIGURE
T T T

See https://matplotlib.o

#figure.titlesize: large
#figure.titleweight: normal
#figure. figsize: 6.4, 4
#figure.dpi: 100

#figure. facecolor: white
#figure.edgecolor: white
#figure. frameon: True

#figure.maz_open_warning: 2

#figure.raise_window : True

The figure subplot param
—hetght.

#figure.subplot.left: 0.1
#figure.subplot.right: 0.9
#figure.subplot.bottom: 0.1
#figure.subplot.top: 0.8
#figure.subplot.wspace: 0.2

#figure.subplot.hspace: 0.2
—~subplots,

Figure layout
#figure.autolayout: False

#figure.constrained_layout.

#figure.constrained_layout.
—representing
#figure.constrained_layout
#figure.constrained_layout.
—representing
#figure.constrained_layout.
—~separated.

FHHE ook ok ok o e o ok o e o ok e oK o K ok K KK

the hetght of the legend handle

the space between the legend line and legend text
the border between the axes and legend edge

column separation

A A A A A H A A HH A H A A A A A KA A A A A H A A KK
*
S A A e e F A A e F A A e HeF A e e F A A e H A A e A A A A A H A A KK
rg/api/figure_api.html#matplotlsd. figure. Figure
size of the figure title (" Figure.suptitle() ")
weight of the figure title
.8 # figure size in inches
figure dots per inch
figure facecolor
figure edgecolor
enable figure frame
0 # The mazimum number of figures to open through
the pyplot interface before emitting a warning.
If less than one this feature is disabled.
Ratse the GUI window to front when show() %s called.

eters. All dimenstions are a fraction of the figure width andy
25 the left side of the subplots of the figure

the right side of the subplots of the figure

the bottom of the subplots of the figure

the top of the subplots of the figure

the amount of width reserved for space between subplots,

expressed as a fraction of the average azis width
the amount of hetght reserved for space betweeny

1
8

HORH R R R R W

H*

expressed as a fraction of the average azxis height

When True, automatically adjust subplot
parameters to make the plot fit the figure
using “tight_layout’
use: False # When True, automatically make plot
elements fit on the figure. (Not
compatible with “autolayout™, above).
h_pad: 0.04167 # Padding around azes objects. Float,

.w_pad: 0.04167 # inches. Default ts 3./72. inches (3 pts)

hspace: 0.02 # Space between subplot groups. Floaty,

wspace: 0.02 # a fraction of the subplot widths being,

KKK K K A oK oK oK o o oK oK K oK K K K K oK oK oK oK K oK oK K K K K K K oK oK oK K K oK oK oK oK oK K K KK K K K K K

(continues on next page)

2.1. Introductory

105

Matplotlib, Release 3.3.4

(continued from previous page)

* IMAGES *
FEHE ook o o oo o e S o o e o o e o o o e S o o e S o o e o o e e o o e o o o e S o o e S o e e o o e e o o e e o o e S oK o e o ok e o o K ok ok Kk ok K

#image.aspect: equal # {equal, auto} or a number
#image.interpolation: antialiased # see help(imshow) for options
#image.cmap: viridis # A colormap name, gray etc...

#image. lut: 256 # the size of the colormap lookup table
#image.origin: upper # {lower, upper}

#image.resample: True

#image.composite_image: True # When True, all the images on a set of azes are
combined into a single composite image before
saving a figure as a vector graphics file,
such as a PDF.

FEHE ook o o ok o e e e e e o e e o o o o o o e e e e e e e e o o o o o o e e e e e e e e e o o o o ok o o e e e e e e e o o o o o o K K e e e e o o o o ok ok

* CONTOUR PLOTS *
THE A ACA A A A A A HE A I HEFE A I HHE A HE A A A A A A A A A A A A A A A A A A KK
#contour.negative_linestyle: dashed # string or on-off ink sequence
#contour.corner_mask: True # {True, False, legacy}
#contour. linewidth: None # {float, Nonel} Size of the contour

linewidths. If set to None,

it falls back to “line.linewidih’.

FEHE ook ok o o e e e e e e e e e o o o o o o e e e e e e e e o o o o o e e e e e e e e e e o o o o e e e e e e e e e e o o o o o ok e e e e e e e o o o ok ok

* ERRORBAR PLOTS *
FHHE K e e o oA HH e e e e e A A A HeHe e e e e e e oA HHeHe e e e e e e e A A HHHe e e e e e e oA HHHHe e e e e e e e oA K

#errorbar.capsize: 0 # length of end cap on error bars in pizels

FEHE ook ok o ok o e e e e e e e o o o o o o o e e e e e e e e o o o o o o e e e e e e e e e o o o ok ok o o e e e e e e e o o o ok o ok K K e e e e o o o ok ok ok

* HISTOGRAM PLOTS *
FHIE KK e e e oA A A A H A A A A HH I A H A A I A A H A A A A A A KKK

#hist.bins: 10 # The default number of histogram bins or 'auto'.

T A AA A A A A A A e S FAC A e S FAE A e F A A e S F A A e F A A e F A A e H A H A A A A S F A e A e K
* SCATTER PLOTS *
FHE A A A A A A A A HE A e HE A A e HeHE A e HE A A A A A A A A A A A H A A KA A H A KK
#scatter.marker: o # The default marker type for scatter plots.
#scatter.edgecolors: face # The default edge colors for scatter plots.

FEHE ook o e o o o o o o o e o o e o o o e S o o e S o o e e o e o o o e o o o e S o o e e o o e o o e o o o e S o o e S o o e e o e o o ok K ok ok K K ok K
* AGG RENDERING *
T A A A A A A A e A A e HeF A e e F A A e HeF A e HeF A e F A A e H A A e A A H A A e H A A e A A e e F A K K
Warning: experimental, 2008/10/10
#agg.path.chunksize: O # 0 to disable; values in the range

10000 to 100000 can improve speed slightly

and prevent an Agg rendering failure

when plotting very large data sets,

(continues on next page)

106 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

espectally if they are very gappy.

It may cause minor artifacts, though.
A value of 20000 ts probably a good
starting point.

FEHE ook o oo o e e o o e o o e oo o e S o o e S o o e S o o e o o e S o o e S o o e e o o e o o e o o o e S o o e e o o e o o o ok K ok oK KK ok K
* PATHS *
B AAAAAAAA A A A FAAAAAAAAA A A K HHF A A A A A A A A A A A K e H A A A A A A A A A HHH A A A A A e K
#path.stimplify: True # When True, simplify paths by removing "invisible"”
points to reduce file size and increase rendering
speed
#path.simplify_threshold: 0.111111111111 # The threshold of similarity below
which vertices will be removed in
the simplification process.
#path.snap: True # When True, rectilinear azis—aligned paths will be snapped
to the nearest pizel when certain criteria are met.
When False, paths will never be snapped.
#path.sketch: None # May be None, or a 3-tuple of the form:
(scale, length, randomness).
- *scalex ts the amplitude of the wiggle

perpendicular to the line (in pizels).
- *length* is the length of the wiggle along the

line (in pizels).
- *rgndomness* is the factor by which the length <s

randomly scaled.

®*H R KR R R

#path.effects:

B AR AAAAKFAAA KK AA A K FAA A K H A A A K HF A A A K H A A A K H A A AN H A A A A K H A A AN H A A A K H A A AN HF A N K F A e
* SAVING FIGURES *
B AR AN A AA A K AAA A K FAA A HHAAA K HAAAAHFAAA K HAAA KK AAAAHAAAAHH AN A KK AN A H A AN KA KK
The default savefig params can be different from the display params

e.g., you may want a higher resolution, or to make the figure

background white

#savefig.dpi: figure # figure dots per inch or 'figure'
#savefig. facecolor: auto # figure facecolor when saving
#savefig.edgecolor: auto # figure edgecolor when saving
#savefig. format: png # {png, ps, pdf, svg}
#savefig.bboz: standard # {tight, standard}
'tight' is incompatible with pipe-based animation
backends (e.g. 'ffmpeg') but will work with those
based on temporary files (e.g. 'ffmpeg_file')
#savefig.pad_inches: 0.1 # Padding to be used when bbozx is set to 'tight'
#savefig.directory: ~ # default directory in savefig dialog boz,
leave empty to always use current working directory
#savefig.transparent: False # setting that controls whether figures are saved with a
transparent background by default
#savefig.orientation: portrait # Orientation of saved figure

tk backend params

(continues on next page)

2.1. Introductory 107

Matplotlib, Release 3.3.4

(continued from previous page)

#tk.window_focus: False # Maintain shell focus for TkAgg

ps backend params

#ps.papersize: letter {auto, letter, legal, ledger, AO-A10, BO-B10}
#ps.useafm: False use of afm fonts, results in small files
#ps.usedistiller: False {ghostscript, zpdf, None}

#
#
#
Experimental: may produce smaller files.

zpdf intended for production of publication quality files,
but requires ghostscript, zpdf and psleps

dpt

Output Type 3 (Type3) or Type 42 (TrueType)

#ps.distiller.res: 6000
#ps. fonttype: 3

PDF backend params

#pdf.compression: 6 # integer from O to 9
0 disables compression (good for debugging)
#pdf. fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)

#pdf.useljcorefonts : False
#pdf.inheritcolor: False

SVG backend params
#svg.image_inline: True # Write raster image data directly into the SVG file

#svg. fonttype: path # How to handle SVG fonts:

path: Embed characters as paths —-- supported

by most SVG renderers

None: Assume fonts are installed on the

machine where the SVG will be wviewed.
#svg.hashsalt: None # If not None, use this string as hash salt instead of uuid4

pgf parameter

See https://matplotlib.org/tutorials/text/pgf.html for more information.
#pgf.rcfonts: True

#pgf.preamble: # See text.latex.preamble for documentation
#pgf.texsystem: zelatex

docstring params
#docstring.hardcopy: False # set this when you want to generate hardcopy docstring

FEHE ook o oo o o o o o o e o o e o o o e S o o e S o o e o o e e o o e o o o e S o o e S o o e o o e o o o e S o o e S o o e e o e o ok K oK oK Kk ok K
* INTERACTIVE KEYMAPS *
B FAAAAAAA A A HHFAAAAAAAA A K HHHAAAAAAA A A A K e HAAAA A A A A A HHHHAA A A K
Event keys to interact with figures/plots wvia keyboard.

See https://matplotlib.org/users/navigation_toolbar.html for more details on
interactive navigation. Customize these settings according to your needs.

Leave the field(s) empty if you don't need a key-map. (i.e., fullscreen : '')
#keymap. fullscreen: f, ctrl+f # toggling

#keymap.home: h, T, home # home or reset mnemonic

#keymap.back: left, c, backspace, MouseButton.BACK # forward / backward keys
#keymap . forward: right, v, MouseButton.FORWARD # for quick mnavigation
#keymap.pan: p # pan mnemonic

#keymap.zoom: o # zoom mnemonic

(continues on next page)

108 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

(continued from previous page)

#keymap.save: s, ctrl+ts
#keymap.help: f1

#keymap.quit: ctrl+w, cmd+w, q
#keymap.quit_all:
#keymap.grid: g
#keymap . grid_minor: G
#keymap.yscale: 1
#keymap.zscale: k, L
#keymap . copy: ctrl+c, cmd+c

saving current figure

display help about active tools

close the current figure

close all figures

switching on/off major grids in current azes
switching on/off minor grids in current azes
toggle scaling of y-azes ('log'/'linear')
toggle scaling of z-azes ('log'/'linear')
Copy figure to clipboard

oW OO R R O™ W W

FEHE Kok e ok o ok o o o o o o o o o K o ke o e o e o K o K o o o oK o oK o ok o o e o e o e o e o K o o o o o oK K o e o e o ke ok K o ok o oK oK oK o ok oK oK ok ok o ok K

* ANIMATION *
i T e S e e ey

#animation.html: none # How to display the animation as HTML in
the IPython notebook:

- 'htmlb' uses HTML5 video tag
- 'gshtml' creates a Javascript animation
#animation.writer: ffmpeg # MovielWriter 'backend' to use
#animation.codec: h264 # Codec to use for writing movie
#animation.bitrate: -1 # Controls size/quality tradeoff for movie.
-1 implies let uttlity auto-determine
#animation. frame_format: png # Controls frame format used by temp files
#animation. ffmpeg_path: ffmpeg # Path to ffmpeg binary. Without full path
$PATH is searched
#animation. ffmpeg_args: # Additional arguments to pass to ffmpeg
#animation.convert_path: convert # Path to ImageMagick's convert binary.
On Windows use the full path since convert
is also the name of a system tool.
#animation.convert_args: # Additional arguments to pass to convert
#animation.embed_limit: 20.0 # Limit, in MB, of size of baseb6 encoded
animation in HIML (4i.e. IPython notebook)

#mpl_toolkits.legacy_colorbar: True

Total running time of the script: (0 minutes 1.561 seconds)

2.2 Intermediate

These tutorials cover some of the more complicated classes and functions in Mat-
plotlib. They can be useful for particular custom and complex visualizations.

2.2. Intermediate 109

Matplotlib, Release 3.3.4

2.2.1 Artist tutorial

Using Artist objects to render on the canvas.
There are three layers to the matplotlib API.

* the matplotlib.backend_bases.FigureCanvas is the area onto which the figure is
drawn

* the matplotlib.backend_bases.Renderer is the object which knows how to draw on
the FigureCanvas

* and the matplotlib.artist.Artist is the object that knows how to use a renderer
to paint onto the canvas.

The FigureCanvas and Renderer handle all the details of talking to user interface toolkits
like wxPython or drawing languages like PostScript®, and the Artist handles all the
high level constructs like representing and laying out the figure, text, and lines. The
typical user will spend 95% of their time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent
the standard graphical objects we want to paint onto our canvas: Line2D, Rectangle,
Tezt, AzesImage, etc., and the containers are places to put them (4zis, Azes and Figure).
The standard use is to create a Figure instance, use the Figure to create one or more
Azes or Subplot instances, and use the Axes instance helper methods to create the
primitives. In the example below, we create a Figure instance using matplotlib.
pyplot. figure(), which is a convenience method for instantiating Figure instances
and connecting them with your user interface or drawing toolkit FigureCanvas. As
we will discuss below, this is not necessary -- you can work directly with PostScript,
PDF Gtk+, or wxPython FigureCanvas instances, instantiate your Figures directly and
connect them yourselves -- but since we are focusing here on the Artist API we'll let
pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot

The 4zes is probably the most important class in the matplotlib API, and the one
you will be working with most of the time. This is because the Axes is the plotting
area into which most of the objects go, and the Axes has many special helper meth-
ods (ptot (), text(), hist(), imshow()) to create the most common graphics primitives
(Line2D, Texzt, Rectangle, AzesImage, respectively). These helper methods will take your
data (e.g., numpy arrays and strings) and create primitive Artist instances as needed
(e.g., Line2D), add them to the relevant containers, and draw them when requested.
Most of you are probably familiar with the Subplot, which is just a special case of an
Axes that lives on a regular rows by columns grid of Subplot instances. If you want to
create an Axes at an arbitrary location, simply use the add_azes () method which takes
a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

110 Chapter 2. Tutorials

https://www.wxpython.org

Matplotlib, Release 3.3.4

Continuing with our example:

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2+#np.pix*t)

line, = ax.plot(t, s, color='blue', 1lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above
(remember Subplot is just a subclass of Axes) and when you call ax.plot, it creates a
Line2D instance and adds it to the Axes.lines list. In the interactive ipython session
below, you can see that the Axes.lines list is length one and contains the same line
that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101] : <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: 1line
Out[102] : <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is "on" which is the default)
then additional lines will be added to the list. You can remove lines later simply by
calling the list methods; either of these will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick,
tick labels and axis labels:

xtext = ax.set_xlabel('my xdata') # returns a Text instance
ytext = ax.set_ylabel('my ydata')

When you call az.set_zlabel, it passes the information on the Tezt instance of the
XAzis. Each Axes instance contains an X4zis and a Y4zis instance, which handle the
layout and drawing of the ticks, tick labels and axis labels.

Try creating the figure below.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
fig.subplots_adjust(top=0.8)
axl = fig.add_subplot(211)
axl.set_ylabel('volts')
axl.set_title('a sine wave')

t = np.arange(0.0, 1.0, 0.01)
S = np.sin(2#np.pi*t)
line, = axl.plot(t, s, color='blue', 1lw=2)

Fizing random state for reproducibility

(continues on next page)

2.2. Intermediate 111

http://ipython.org/

Matplotlib, Release 3.3.4

(continued from previous page)

np.random. seed (19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(np.random.randn(1000), 50,
facecolor='yellow', edgecolor='yellow')

ax2.set_xlabel('time (s)')

plt.show()
a sine wave
1.0 -
0.5
2 50
s ©
_.DS -
_IID] T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
60 -
40 -
20 -
0 T T T T T T T T
-3 -2 -1 0 1 2 3 4
time (s)

Customizing your objects

Every element in the figure is represented by a matplotlib 4rtist, and each has an
extensive list of properties to configure its appearance. The figure itself contains
a Rectangle exactly the size of the figure, which you can use to set the background
color and transparency of the figures. Likewise, each 4zes bounding box (the standard
white box with black edges in the typical matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances
are stored as member variables Figure.patch and Axes.patch ("Patch" is a name inher-
ited from MATLAB, and is a 2D "patch" of color on the figure, e.g., rectangles, circles
and polygons). Every matplotlib Artist has the following properties

112 Chapter 2. Tutorials

Matplotlib, Release 3.3.4

Property Description

alpha The transparency - a scalar from 0-1

ani- A boolean that is used to facilitate animated drawing

mated

axes The axes that the Artist lives in, possibly None

clip box | The bounding box that clips the Artist

clip on Whether clipping is enabled

clip path | The path the artist is clipped to

contains | A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None

label A text label (e.g., for auto-labeling)

picker A python object that controls object picking

trans- The transformation

form

visible A boolean whether the artist should be drawn

zorder A number which determines the drawing order

raster- Boolean; Turns vectors into raster graphics (for compression & eps
ized transparency)

Each of the properties is accessed with an old-fashioned setter or getter (yes we know
this irritates Pythonistas and we plan to support direct access via properties or traits
but it hasn't been done yet). For example, to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5%a)

If you want to set a number of properties at once, you can also use the set method
with keyword arguments. For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist
properties is to use the matplotlib.artist.getp () function (simply getp () in pyplot),
which lists the properties and their values. This works for classes derived from Artist
as well, e.g., Figure and Rectangle. Here are the Figure rectangle properties men-
tioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True

axes = None

clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec

facecolor or fc

o
O =

.75

(continues on next page)

2.2. Intermediate 113

Matplotlib, Release 3.3.4

(continued from previous page)

figure = Figure(8.125x6.125)
fill = 1

hatch = None

height =1

label =

linewidth or 1w = 1.0

picker = None

transform = <Affine object at 0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))
visible = True

width = 1

window_extent = <Bbox object at Ox134acbcc>
x=0

y=20

zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can
consult the interactive "help" or the matplotlib.artist for a listing of properties for a
given object.

Object containers

Now that we know how to inspect and set the properties of a given object we want
to configure, we need to know how to get at that object. As mentioned in the intro-
duction, there are two kinds of objects: primitives and containers. The primitives are
usually the things you want to configure (the font of a Tezt instance, the width of a
Line2D) although the containers also have some properties as well -- for example the
Azes Artist is a container that contains many of the primitives in your plot, but it also
has properties like the xscale to control whether the xaxis is 'linear' or 'log'. In this
section we'll review where the various container objects store the Artists that you
want to get at.

Figure container

The top level container Artist is the matplotlib. figure.Figure, and it contains every-
thing in the figure. The background of the figure is a Rectangle which is stored in
Figure.patch. As you add subplots (add_subplot()) and axes (add_azes()) to the figure
these will be appended to the Figure.azes. These are also returned by the methods
that create them:

In [156]: fig = plt.figure()

In [157]: ax1l

fig.add_subplot(211)

In [158]: ax2

fig.add_axes([0.1, 0.1, 0.7, 0.3])

(continues on ne