Source code for matplotlib.tri.tricontour

import numpy as np

from matplotlib import docstring
from matplotlib.contour import ContourSet
from matplotlib.tri.triangulation import Triangulation


[docs]class TriContourSet(ContourSet): """ Create and store a set of contour lines or filled regions for a triangular grid. User-callable method: clabel Attributes ---------- ax The axes object in which the contours are drawn. collections A silent_list of LineCollections or PolyCollections. levels Contour levels. layers Same as levels for line contours; half-way between levels for filled contours. See :meth:`_process_colors`. """ def __init__(self, ax, *args, **kwargs): """ Draw triangular grid contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first argument of the initializer must be an axes object. The remaining arguments and keyword arguments are described in the docstring of `~.Axes.tricontour`. """ ContourSet.__init__(self, ax, *args, **kwargs) def _process_args(self, *args, **kwargs): """ Process args and kwargs. """ if isinstance(args[0], TriContourSet): C = args[0].cppContourGenerator if self.levels is None: self.levels = args[0].levels else: from matplotlib import _tri tri, z = self._contour_args(args, kwargs) C = _tri.TriContourGenerator(tri.get_cpp_triangulation(), z) self._mins = [tri.x.min(), tri.y.min()] self._maxs = [tri.x.max(), tri.y.max()] self.cppContourGenerator = C return kwargs def _get_allsegs_and_allkinds(self): """ Create and return allsegs and allkinds by calling underlying C code. """ allsegs = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() allkinds = [] for lower, upper in zip(lowers, uppers): segs, kinds = self.cppContourGenerator.create_filled_contour( lower, upper) allsegs.append([segs]) allkinds.append([kinds]) else: allkinds = None for level in self.levels: segs = self.cppContourGenerator.create_contour(level) allsegs.append(segs) return allsegs, allkinds def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) z = np.ma.asarray(args[0]) if z.shape != tri.x.shape: raise ValueError('z array must have same length as triangulation x' ' and y arrays') # z values must be finite, only need to check points that are included # in the triangulation. z_check = z[np.unique(tri.get_masked_triangles())] if np.ma.is_masked(z_check): raise ValueError('z must not contain masked points within the ' 'triangulation') if not np.isfinite(z_check).all(): raise ValueError('z array must not contain non-finite values ' 'within the triangulation') z = np.ma.masked_invalid(z, copy=False) self.zmax = float(z_check.max()) self.zmin = float(z_check.min()) if self.logscale and self.zmin <= 0: raise ValueError('Cannot %s log of negative values.' % fn) self._process_contour_level_args(args[1:]) return (tri, z)
docstring.interpd.update(_tricontour_doc=""" Draw contour %(type)s on an unstructured triangular grid. The triangulation can be specified in one of two ways; either :: %(func)s(triangulation, ...) where *triangulation* is a `.Triangulation` object, or :: %(func)s(x, y, ...) %(func)s(x, y, triangles, ...) %(func)s(x, y, triangles=triangles, ...) %(func)s(x, y, mask=mask, ...) %(func)s(x, y, triangles, mask=mask, ...) in which case a `.Triangulation` object will be created. See that class' docstring for an explanation of these cases. The remaining arguments may be:: %(func)s(..., Z) where *Z* is the array of values to contour, one per point in the triangulation. The level values are chosen automatically. :: %(func)s(..., Z, levels) contour up to *levels+1* automatically chosen contour levels (*levels* intervals). :: %(func)s(..., Z, levels) draw contour %(type)s at the values specified in sequence *levels*, which must be in increasing order. :: %(func)s(Z, **kwargs) Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details. Parameters ---------- triangulation : `.Triangulation`, optional The unstructured triangular grid. If specified, then *x*, *y*, *triangles*, and *mask* are not accepted. x, y : array-like, optional The coordinates of the values in *Z*. triangles : int array-like of shape (ntri, 3), optional For each triangle, the indices of the three points that make up the triangle, ordered in an anticlockwise manner. If not specified, the Delaunay triangulation is calculated. mask : bool array-like of shape (ntri), optional Which triangles are masked out. Z : array-like(N, M) The height values over which the contour is drawn. levels : int or array-like, optional Determines the number and positions of the contour lines / regions. If an int *n*, use `~matplotlib.ticker.MaxNLocator`, which tries to automatically choose no more than *n+1* "nice" contour levels between *vmin* and *vmax*. If array-like, draw contour lines at the specified levels. The values must be in increasing order. Returns ------- `~matplotlib.tri.TriContourSet` Other Parameters ---------------- colors : color string or sequence of colors, optional The colors of the levels, i.e., the contour %(type)s. The sequence is cycled for the levels in ascending order. If the sequence is shorter than the number of levels, it's repeated. As a shortcut, single color strings may be used in place of one-element lists, i.e. ``'red'`` instead of ``['red']`` to color all levels with the same color. This shortcut does only work for color strings, not for other ways of specifying colors. By default (value *None*), the colormap specified by *cmap* will be used. alpha : float, default: 1 The alpha blending value, between 0 (transparent) and 1 (opaque). cmap : str or `.Colormap`, default: :rc:`image.cmap` A `.Colormap` instance or registered colormap name. The colormap maps the level values to colors. If both *colors* and *cmap* are given, an error is raised. norm : `~matplotlib.colors.Normalize`, optional If a colormap is used, the `.Normalize` instance scales the level values to the canonical colormap range [0, 1] for mapping to colors. If not given, the default linear scaling is used. origin : {*None*, 'upper', 'lower', 'image'}, default: None Determines the orientation and exact position of *Z* by specifying the position of ``Z[0, 0]``. This is only relevant, if *X*, *Y* are not given. - *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner. - 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner. - 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left corner. - 'image': Use the value from :rc:`image.origin`. extent : (x0, x1, y0, y1), optional If *origin* is not *None*, then *extent* is interpreted as in `.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0, 0], and (*x1*, *y1*) is the position of Z[-1, -1]. This argument is ignored if *X* and *Y* are specified in the call to contour. locator : ticker.Locator subclass, optional The locator is used to determine the contour levels if they are not given explicitly via *levels*. Defaults to `~.ticker.MaxNLocator`. extend : {'neither', 'both', 'min', 'max'}, default: 'neither' Determines the ``%(func)s``-coloring of values that are outside the *levels* range. If 'neither', values outside the *levels* range are not colored. If 'min', 'max' or 'both', color the values below, above or below and above the *levels* range. Values below ``min(levels)`` and above ``max(levels)`` are mapped to the under/over values of the `.Colormap`. Note that most colormaps do not have dedicated colors for these by default, so that the over and under values are the edge values of the colormap. You may want to set these values explicitly using `.Colormap.set_under` and `.Colormap.set_over`. .. note:: An existing `.TriContourSet` does not get notified if properties of its colormap are changed. Therefore, an explicit call to `.ContourSet.changed()` is needed after modifying the colormap. The explicit call can be left out, if a colorbar is assigned to the `.TriContourSet` because it internally calls `.ContourSet.changed()`. xunits, yunits : registered units, optional Override axis units by specifying an instance of a :class:`matplotlib.units.ConversionInterface`.""") @docstring.Substitution(func='tricontour', type='lines') @docstring.dedent_interpd def tricontour(ax, *args, **kwargs): """ %(_tricontour_doc)s linewidths : float or array-like, default: :rc:`contour.linewidth` The line width of the contour lines. If a number, all levels will be plotted with this linewidth. If a sequence, the levels in ascending order will be plotted with the linewidths in the order specified. If None, this falls back to :rc:`lines.linewidth`. linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional If *linestyles* is *None*, the default is 'solid' unless the lines are monochrome. In that case, negative contours will take their linestyle from :rc:`contour.negative_linestyle` setting. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. """ kwargs['filled'] = False return TriContourSet(ax, *args, **kwargs) @docstring.Substitution(func='tricontourf', type='regions') @docstring.dedent_interpd def tricontourf(ax, *args, **kwargs): """ %(_tricontour_doc)s antialiased : bool, default: True Whether to use antialiasing. Notes ----- `.tricontourf` fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is:: z1 < Z <= z2 except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value). """ kwargs['filled'] = True return TriContourSet(ax, *args, **kwargs)