Matplotlib
Release 3.3.0

John Hunter Darren Dale Eric Firing
Michael Droettboom
and the matplotlib development team

July 17, 2020

User’s Guide
Installation Guide
Tutorials
Interactive Figures

What’s new?

I

1

2

3

4

5 What’s new in Matplotlib 3.3.0
6 History

7 GitHub Stats

8 Previous What’s New

9 License

10Citing Matplotlib

11 Credits

II The Matplotlib FAQ
12Installation

13How-to

14 Troubleshooting

15 Environment Variables

IIT API Overview
16 API Changes
17Usage patterns

18 Modules

CONTENTS

371
391
393
413
415
559
769
773
775

779
781
785
797
801

803
805
959
961

19 Toolkits

IV External Resources
20Books, Chapters and Articles
21Videos

22 Tutorials

V Third party packages
23 Mapping toolkits

24 Declarative libraries

25 Specialty plots

26 Animations

27 Interactivity

28 Rendering backends

29 Miscellaneous

30GUI applications

VI The Matplotlib Developers’ Guide
31 Contributing

32 Developer’s tips for testing

33 Writing documentation

34 Developer’s guide for creating scales and transformations
35 Working with Matplotlib source code

36 Pull request guidelines

37 Release Guide

38 Minimum Version of Dependencies Policy
39 Matplotlib Enhancement Proposals
40Licenses

41 Default Color changes

2257

2431
2433
2435
2437

2439
2443
2447
2449
2455
2457
2459
2461
2467

2469
2471
2481
2487
2505
2509
2529
2535
2541
2543
2603
2605

VII Glossary 2609
Bibliography 2613
Python Module Index 2615
Index 2617

Part 1

User’s Guide

CHAPTER
ONE

INSTALLATION GUIDE

Note: If you wish to contribute to the project, it’'s recommended you install the latest devel-
opment version.

Contents

* Installation Guide
- Installing an official release
* Test data
- Third-party distributions of Matplotlib
* Scientific Python Distributions
* Linux: using your package manager
- Installing from source
* Dependencies

* FreeType and Qhull

*

Building on Windows

*

Conda packages

1.1 Installing an official release

Matplotlib and its dependencies are available as wheel packages for macOS, Windows and
Linux distributions:

python -m pip install -U pip
python -m pip install -U matplotlib

If this command results in Matplotlib being compiled from source and there’s trouble with
the compilation, you can add --prefer-binary to select the newest version of Matplotlib for
which there is a precompiled wheel for your OS and Python.

Note: The following backends work out of the box: Agg, ps, pdf, svg

Matplotlib, Release 3.3.0

Python is typically shipped with tk bindings which are used by TkAgg.

For support of other GUI frameworks, LaTeX rendering, saving animations and a larger se-
lection of file formats, you need to install additional dependencies.

Although not required, we suggest also installing IPython for interactive use. To easily install
a complete Scientific Python stack, see Scientific Python Distributions below.

1.1.1 Test data

The wheels (*.whl1) on the PyPI download page do not contain test data or example code.

If you want to try the many demos that come in the Matplotlib source distribution, download
the x.tar.gz file and look in the examples subdirectory.

To run the test suite:

» extract the lib/matplotlib/tests Or lib/mpl_toolkits/tests directories from the source
distribution.

* install test dependencies: pytest, MiKTeX, GhostScript, ffmpeg, avconv, ImageMagick,
and Inkscape.

* run python -mpytest.

1.2 Third-party distributions of Matplotlib

1.2.1 Scientific Python Distributions

Anaconda and ActiveState are excellent choices that “just work” out of the box for Windows,
macOS and common Linux platforms. WinPython is an option for Windows users. All of these
distributions include Matplotlib and Ilots of other useful (data) science tools.

1.2.2 Linux: using your package manager
If you are on Linux, you might prefer to use your package manager. Matplotlib is packaged
for almost every major Linux distribution.

* Debian / Ubuntu: sudo apt-get install python3-matplotlib

* Fedora: sudo dnf install python3-matplotlib

* Red Hat: sudo yum install python3-matplotlib

* Arch: sudo pacman -S python-matplotlib

1.3 Installing from source

If you are interested in contributing to Matplotlib development, running the latest source
code, or just like to build everything yourself, it is not difficult to build Matplotlib from source.

4 Chapter 1. Installation Guide

https://pypi.org/project/matplotlib/
https://pypi.org/project/pytest
https://inkscape.org/
https://www.anaconda.com/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/

Matplotlib, Release 3.3.0

Grab the latest tar.gz release file from the PyPI files page, or if you want to develop Matplotlib
or just need the latest bugfixed version, grab the latest git version, and see Install from source.

Matplotlib can be installed from the source directory with a simple

python -m pip install .

We provide a setup.cfg file which you can use to customize the build process. For example,
which default backend to use, whether some of the optional libraries that Matplotlib ships with
are installed, and so on. This file will be particularly useful to those packaging Matplotlib.

1.3.1 Dependencies

Matplotlib requires the following dependencies:
e Python (>= 3.6)
e NumPy (>= 1.15)
» setuptools
» cycler (>= 0.10.0)
e dateutil (>= 2.1)
» kiwisolver (>= 1.0.0)
e Pillow (>= 6.2)
* pyparsing (>=2.0.3)

Optionally, you can also install a number of packages to enable better user interface toolk-
its. See What is a backend? for more details on the optional Matplotlib backends and the
capabilities they provide.

e Tk (>= 8.3, !=8.6.0 or 8.6.1): for the Tk-based backends.

» PyQt4 (>= 4.6) or PySide (>= 1.0.3)': for the Qt4-based backends.

* PyQt5 or PySide2: for the Qt5-based backends.

e PyGObject: for the GTK3-based backends?.

« wxPython (>= 4)3: for the wx-based backends.

* pycairo (>= 1.11.0) or cairocffi (>= 0.8): for the GTK3 and/or cairo-based backends.
» Tornado: for the WebAgg backend.

For better support of animation output format and image file formats, LaTeX, etc., you can
install the following:

» ffmpeg: for saving movies.
* ImageMagick: for saving animated gifs.
* LaTeX (with cm-super) and GhostScript (>=9.0) : for rendering text with LaTeX.

» fontconfig (>= 2.7): for detection of system fonts on Linux.

1 PySide cannot be pip-installed on Linux (but can be conda-installed).

2 If using pip (and not conda), PyGObject must be built from source; see https://pygobject.readthedocs.io/en/latest/
devguide/dev _environ.html.

51t using pip (and not conda) on Linux, wxPython wheels must be manually downloaded from https://wxpython.
org/pages/downloads/.

1.3. Installing from source 5

https://pypi.org/project/matplotlib/
https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://www.python.org/downloads/
https://numpy.org
https://setuptools.readthedocs.io/en/latest/
https://matplotlib.org/cycler/
https://pypi.org/project/python-dateutil
https://github.com/nucleic/kiwi
https://pillow.readthedocs.io/en/latest/
https://pypi.org/project/pyparsing/
https://docs.python.org/3/library/tk.html
https://pypi.org/project/PyQt4
https://pypi.org/project/PySide
https://pypi.org/project/PyQt5
https://pypi.org/project/PySide2
https://pygobject.readthedocs.io/en/latest/
https://www.wxpython.org/
https://pycairo.readthedocs.io/en/latest/
https://cairocffi.readthedocs.io/en/latest/
https://pypi.org/project/tornado
https://www.ffmpeg.org/
https://www.imagemagick.org/script/index.php
https://www.latex-project.org/
https://ctan.org/pkg/cm-super
https://ghostscript.com/download/
https://www.fontconfig.org
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://wxpython.org/pages/downloads/
https://wxpython.org/pages/downloads/

Matplotlib, Release 3.3.0

1.3.2 FreeType and Qhull

Matplotlib depends on FreeType (>= 2.3), a font rendering library, and on Qhull (>= 2015.2),
a library for computing triangulations. By default (except on AIX) Matplotlib downloads and
builds its own copy of FreeType (this is necessary to run the test suite, because different
versions of FreeType rasterize characters differently), and uses its own copy of Qhull.

To force Matplotlib to use a copy of FreeType or Qhull already installed in your system, create
a setup.cfg file with the following contents:

[1ibs]
system_freetype = true
system_ghull = true

before running python -m pip install ..

In this case, you need to install the FreeType and Qhull library and headers. This can be
achieved using a package manager, e.g. for FreeType:

Pick ONE of the following:

sudo apt install libfreetype6-dev # Debian/Ubuntu
sudo dnf install freetype-devel # Fedora

brew install freetype # macOS with Homebrew
conda install freetype # conda, any 0S

(adapt accordingly for Qhull).

On Linux and macQOS, it is also recommended to install pkg-config, a helper tool for locating
FreeType:

Pick ONE of the following:

sudo apt install pkg-config # Debian/Ubuntu

sudo dnf install pkgconf # Fedora

brew install pkg-config # macOS with Homebrew

conda install pkg-config # conda

Or point the PKG_CONFIG environment vartiable to the path to pkg-config:
export PKG_CONFIG=...

If not using pkg-config (in particular on Windows), you may need to set the include path (to the
library headers) and link path (to the libraries) explicitly, if they are not in standard locations.
This can be done using standard environment variables - on Linux and OSX:

export CFLAGS='-I/directory/containing/ft2build.h’
export LDFLAGS='-L/directory/containing/libfreetype.so'

and on Windows:

set CL=/IC:\directory\containing\ft2build.h
set LINK=/LIBPATH:C:\directory\containing\freetype.lib

Note: Matplotlib always uses its own copies of the following libraries:
* Agg: the Anti-Grain Geometry C++ rendering engine;

* ttconv: a TrueType font utility.

6 Chapter 1. Installation Guide

https://www.freetype.org/
http://www.qhull.org/
https://www.freedesktop.org/wiki/Software/pkg-config/

Matplotlib, Release 3.3.0

1.3.3 Building on Windows

Compiling Matplotlib (or any other extension module, for that matter) requires Visual Studio
2015 or later.

If you are building your own Matplotlib wheels (or sdists), note that any DLLs that you copy
into the source tree will be packaged too.

1.3.4 Conda packages

The conda packaging scripts for Matplotlib are available at https://github.com/conda-forge/
matplotlib-feedstock.

1.3. Installing from source 7

https://github.com/conda-forge/matplotlib-feedstock
https://github.com/conda-forge/matplotlib-feedstock

Matplotlib, Release 3.3.0

8 Chapter 1. Installation Guide

CHAPTER
TWO

TUTORIALS

This page contains more in-depth guides for using Matplotlib. It is broken up into beginner,
intermediate, and advanced sections, as well as sections covering specific topics.

For shorter examples, see our examples page. You can also find external resources and a FAQ
in our user guide.

2.1 Introductory

These tutorials cover the basics of creating visualizations with Matplotlib, as well as some
best-practices in using the package effectively.

2.1.1 Usage Guide

This tutorial covers some basic usage patterns and best-practices to help you get started with
Matplotlib.

import matplotlib.pyplot as plt
import numpy as np

A simple example

Matplotlib graphs your data on Figures (i.e., windows, Jupyter widgets, etc.), each of which
can contain one or more Azes (i.e., an area where points can be specified in terms of x-y
coordinates (or theta-r in a polar plot, or x-y-z in a 3D plot, etc.). The most simple way of
creating a figure with an axes is using pyplot.subplots. We can then use Azes.plot to draw
some data on the axes:

fig, ax = plt.subplots() # Create a figure containing a single azes.
ax.plot([1, 2, 3, 41, [1, 4, 2, 3]1) # Plot some data on the azes.

../gallery/index.html
../resources/index.html
../faq/index.html
../contents.html

Matplotlib, Release 3.3.0

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

’ [<matplotlib.lines.Line2D object at 0x7£08b37463d0>] ‘

Many other plotting libraries or languages do not require you to explicitly create an axes. For
example, in MATLAB, one can just do

’plot([l, 2, 3, 41, [1, 4, 2, 3]) J MATLAB plot. ‘

and get the desired graph.

In fact, you can do the same in Matplotlib: for each 4zes graphing method, there is a corre-
sponding function in the matplotlib.pyplot module that performs that plot on the ”current”
axes, creating that axes (and its parent figure) if they don’t exist yet. So the previous example
can be written more shortly as

plt.plot([1, 2, 3, 41, [1, 4, 2, 3]) # Matplotlib plot.

10 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7f08b4e81220>]

Parts of a Figure

Now, let’s have a deeper look at the components of a Matplotlib figure.

2.1. Introductory 11

Matplotlib, Release 3.3.0

@ Anaw of a figure

Title

|
|
Major tick :
I

D

Minor tick

Major tick label

l=]

s label

|
|
|
I
|
7 | o]
I
o]
T ©
0 o]
= o
m 22— ——————= ———————————- ol
_ [
o %o o)
Y axis labhel Q Oo: o
|
© o
- |
| o
|
l__________o _____ Y :
o b |
— | |
|
O oS '
. | | |
. | I [
Figure Line : :
4 Axes (line plot) I |
; : I
0 T T i T T T i T T T i T T T
0.2% 2.75 1 1.25 1.50 2 2.25 2.50 2.75 3 3.25 3.50 3.75 4

Minor tick label Made with http://matplotlib.org

X axis label

Figure

The whole figure. The figure keeps track of all the child 4zes, a smattering of ’special’ artists
(titles, figure legends, etc), and the canvas. (Don’t worry too much about the canvas, it is
crucial as it is the object that actually does the drawing to get you your plot, but as the user
it is more-or-less invisible to you). A figure can contain any number of 4zes, but will typically
have at least one.

The easiest way to create a new figure is with pyplot:

fig = plt.figure() # an empty figure with no Azes
fig, ax = plt.subplots() # a figure with a single Azes
fig, axs = plt.subplots(2, 2) # a figure with a 2z2 grid of Azes

12 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

It’s convenient to create the axes together with the figure, but you can also add axes later on,
allowing for more complex axes layouts.

Axes

This is what you think of as "a plot’, it is the region of the image with the data space. A given
figure can contain many Axes, but a given Azes object can only be in one Figure. The Axes
contains two (or three in the case of 3D) 4zis objects (be aware of the difference between
Axes and Axis) which take care of the data limits (the data limits can also be controlled via
the azes.Azes.set_zlim() and azes.Azes.set_ylim() methods). Each 4zes has a title (set via
set_title()), an x-label (set via set_zlabel()), and a y-label set via set_ylabel)).

The 4zes class and its member functions are the primary entry point to working with the OO
interface.

Axis

These are the number-line-like objects. They take care of setting the graph limits and gener-
ating the ticks (the marks on the axis) and ticklabels (strings labeling the ticks). The location
of the ticks is determined by a Locator object and the ticklabel strings are formatted by a
Formatter. The combination of the correct Locator and Formatter gives very fine control over
the tick locations and labels.

Artist

Basically everything you can see on the figure is an artist (even the Figure, 4dzes, and Azis
objects). This includes Tezt objects, Line2D objects, collections objects, Patch objects ... (you
get the idea). When the figure is rendered, all of the artists are drawn to the canvas. Most
Artists are tied to an Axes; such an Artist cannot be shared by multiple Axes, or moved from
one to another.

Types of inputs to plotting functions

All of plotting functions expect numpy . array Or numpy .ma.masked_array as input. Classes that are
‘array-like’ such as pandas data objects and numpy.matrix may or may not work as intended. It
is best to convert these to numpy.array objects prior to plotting.

For example, to convert a pandas.DataFrame

a = pandas.DataFrame(np.random.rand(4, 5), columns = list('abcde'))
a_asarray = a.values

and to convert a numpy.matrix

b = np.matrix([[1, 2], [3, 411)
b_asarray = np.asarray(b)

2.1. Introductory 13

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ma.masked_array.html#numpy.ma.masked_array
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

Matplotlib, Release 3.3.0

The object-oriented interface and the pyplot interface

As noted above, there are essentially two ways to use Matplotlib:

» Explicitly create figures and axes, and call methods on them (the “object-oriented (OO)

style”).

* Rely on pyplot to automatically create and manage the figures and axes, and use pyplot

functions for plotting.

So one can do (OO-style)

X

#

= np.linspace(0, 2, 100)

Note that even in the 0O0-style, we use ~.pyplot.figure to create the figure.

fig, ax = plt.subplots() # Create a figure and an azes.

ax.
ax.

ax

ax.

ax

ax.

ax

plot(x, x, label='linear') # Plot some data on the azes.

plot(x, x**2, label='quadratic') # Plot more data on the azes...
.plot(x, x**3, label='cubic') # ... and some more.

set_xlabel('x label') # Add an z-label to the azes.
.set_ylabel('y label') # Add a y-label to the azes.
set_title("Simple Plot") # Add a title to the azes.

.legend() # Add a legend.

Simple Plot

8 1 — linear
—— quadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

14

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

<matplotlib.legend.Legend object at 0x7f£08b509d1c0>

or (pyplot-style)

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') # Plot some data on the (implicit) azes.
plt.plot(x, x**2, label='quadratic') # etc.

plt.plot(x, x**3, label='cubic')

plt.xlabel('x label')

plt.ylabel('y label')

plt.title("Simple Plot")

plt.legend()

Simple Plot

8 1 — linear
guadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

<matplotlib.legend.Legend object at 0x7f08b45e1760>

Actually there is a third approach, for the case where you are embedding Matplotlib in a GUI
application, which completely drops pyplot, even for figure creation. We won’t discuss it here;
see the corresponding section in the gallery for more info (user interfaces).

Matplotlib’s documentation and examples use both the OO and the pyplot approaches (which
are equally powerful), and you should feel free to use either (however, it is preferable pick one
of them and stick to it, instead of mixing them). In general, we suggest to restrict pyplot to

2.1. Introductory 15

Matplotlib, Release 3.3.0

interactive plotting (e.g., in a Jupyter notebook), and to prefer the OO-style for non-interactive
plotting (in functions and scripts that are intended to be reused as part of a larger project).

Note: In older examples, you may find examples that instead used the so-called pylab inter-
face, via from pylab import *. This star-import imports everything both from pyplot and from
numpy, so that one could do

x = linspace(0, 2, 100)
plot(x, x, label='linear')

for an even more MATLAB-like style. This approach is strongly discouraged nowadays and
deprecated; it is only mentioned here because you may still encounter it in the wild.

Typically one finds oneself making the same plots over and over again, but with different
data sets, which leads to needing to write specialized functions to do the plotting. The rec-
ommended function signature is something like:

def my_plotter(ax, datal, data2, param_dict):

mmn

A helper function to make a graph

Parameters
ar :@ Azes
The azes to draw to

datal : array
The z data

data2 : array
The y data

param_dict : dict
Dictionary of kwargs to pass to az.plot

Returns
out : list
list of artists added
out = ax.plot(datal, data2, **param_dict)
return out

which you would then use as:

datal, data2, data3, data4 = np.random.randn(4, 100)
fig, ax = plt.subplots(l, 1)
my_plotter(ax, datal, data2, {'marker': 'x'})

16 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/index.html#module-numpy

Matplotlib, Release 3.3.0

Out:

[<matplotlib.lines.Line2D object at 0x7£08b5976bb0>]

or if you wanted to have 2 sub-plots:

fig, (axl, ax2) = plt.subplots(l, 2)
my_plotter(axl, datal, data2, {'marker': 'x'})
my_plotter(ax2, data3, data4, {'marker': 'o'})

2.1. Introductory

17

Matplotlib, Release 3.3.0

Out:

[<matplotlib.lines.Line2D object at 0x7£08b482ebb0>]

For these simple examples this style seems like overkill, however once the graphs get slightly
more complex it pays off.

Backends

What is a backend?

A lot of documentation on the website and in the mailing lists refers to the "backend” and
many new users are confused by this term. matplotlib targets many different use cases and
output formats. Some people use matplotlib interactively from the python shell and have
plotting windows pop up when they type commands. Some people run Jupyter notebooks
and draw inline plots for quick data analysis. Others embed matplotlib into graphical user
interfaces like wxpython or pygtk to build rich applications. Some people use matplotlib in
batch scripts to generate postscript images from numerical simulations, and still others run
web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these
capabilities is called a backend; the “frontend” is the user facing code, i.e., the plotting code,
whereas the “backend” does all the hard work behind-the-scenes to make the figure. There
are two types of backends: user interface backends (for use in pygtk, wxpython, tkinter, qt4,

18 Chapter 2. Tutorials

https://jupyter.org

Matplotlib, Release 3.3.0

or macosx; also referred to as ”“interactive backends”) and hardcopy backends to make image
files (PNG, SVG, PDF, PS; also referred to as “non-interactive backends”).

Selecting a backend

There are three ways to configure your backend:
1. The rcParams["backend"] (default: 'agg') parameter in your matplotlibrc file
2. The MPLBACKEND environment variable
3. The function matplotiib.use()

A more detailed description is given below.

If multiple of these are configurations are present, the last one from the list takes precedence;
e.g. calling matplotiib.use() will override the setting in your matplotlibrec.

If no backend is explicitly set, Matplotlib automatically detects a usable backend based on
what is available on your system and on whether a GUI event loop is already running. On
Linux, if the environment variable DISPLAY is unset, the “event loop” is identified as "headless”,
which causes a fallback to a noninteractive backend (agg).

Here is a detailed description of the configuration methods:

1. Setting rcParams["backend"] (default: 'agg') in your matplotlibrc file:

backend : qtbagg # use pyqt5 with antigrain (agg) rendering

See also Customizing Matplotlib with style sheets and rcParams.
2. Setting the MPLBACKEND environment variable:
You can set the environment variable either for your current shell or for a single script.

On Unix:

> export MPLBACKEND=qtbagg
> python simple_plot.py

> MPLBACKEND=qtbagg python simple_plot.py

On Windows, only the former is possible:

> set MPLBACKEND=qtb5agg
> python simple_plot.py

Setting this environment variable will override the backend parameter in any
matplotlibrc, even if there is a matplotlibrc in your current working directory. There-
fore, setting MPLBACKEND globally, e.g. in your .bashrc or .profile, is discouraged as it
might lead to counter-intuitive behavior.

3. If your script depends on a specific backend you can use the function matplotiib.use():

import matplotlib
matplotlib.use('qt5agg')

This should be done before any figure is created; otherwise Matplotlib may fail to switch
the backend and raise an ImportError.

2.1. Introductory 19

../../tutorials/introductory/customizing.html?highlight=backend#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=backend#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Using use will require changes in your code if users want to use a different backend.
Therefore, you should avoid explicitly calling use unless absolutely necessary.

The builtin backends

By default, Matplotlib should automatically select a default backend which allows both inter-
active work and plotting from scripts, with output to the screen and/or to a file, so at least
initially you will not need to worry about the backend. The most common exception is if your
Python distribution comes without tkinter and you have no other GUI toolkit installed; this
happens on certain Linux distributions, where you need to install a Linux package named
python-tk (or similar).

If, however, you want to write graphical user interfaces, or a web application server (How to
use Matplotlib in a web application server), or need a better understanding of what is going
on, read on. To make things a little more customizable for graphical user interfaces, mat-
plotlib separates the concept of the renderer (the thing that actually does the drawing) from
the canvas (the place where the drawing goes). The canonical renderer for user interfaces is
Agg which uses the Anti-Grain Geometry C++ library to make a raster (pixel) image of the fig-
ure; it is used by the Qt5Agg, Qt4Agg, GTK3Agg, wxAgg, TkAgg, and macosx backends. An alternative
renderer is based on the Cairo library, used by Qt5Cairo, Qt4Cairo, etc.

For the rendering engines, one can also distinguish between vector or raster renderers. Vec-
tor graphics languages issue drawing commands like "draw a line from this point to this
point” and hence are scale free, and raster backends generate a pixel representation of the
line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backend for each;
these are non-interactive backends, capable of writing to a file):

Ren- Filetypes Description
derer
AGG png raster graphics - high quality images using the Anti-Grain Geom-
etry engine
PDF pdf vector graphics - Portable Document Format
PS psS, eps vector graphics - Postscript output
SVG svg vector graphics - Scalable Vector Graphics
PGF pgf, pdf vector graphics - using the pgf package
Cairo | png, ps, pdf, | raster or vector graphics - using the Cairo library
svg

To save plots using the non-interactive backends, wuse the matplotlib.pyplot.
savefig('filename') method.

And here are the user interfaces and renderer combinations supported; these are interactive
backends, capable of displaying to the screen and of using appropriate renderers from the
table above to write to a file:

20 Chapter 2. Tutorials

https://docs.python.org/3/library/tkinter.html#module-tkinter
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
http://antigrain.com/
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://ctan.org/pkg/pgf
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://www.cairographics.org

Matplotlib, Release 3.3.0

Back- Description

end

QtbAgg Agg rendering in a Qt5 canvas (requires PyQt5). This backend can be activated in
[Python with %matplotlib qt5.

ipympl| Agg rendering embedded in a Jupyter widget. (requires ipympl). This backend

can be enabled in a Jupyter notebook with Ymatplotlib ipympl.

GTK3Agdgg rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or cairocffi).

This backend can be activated in IPython with %matplotlib gtk3.

ma- Agg rendering into a Cocoa canvas in OSX. This backend can be activated in

COSX [Python with %matplotlib osx.

Tk- Agg rendering to a Tk canvas (requires Tkinter). This backend can be activated

Agg in IPython with Ymatplotlib tk.

nbAgg | Embed an interactive figure in a Jupyter classic notebook. This backend can be
enabled in Jupyter notebooks via Ymatplotlib notebook.

We- On show() will start a tornado server with an interactive figure.

bAgg

GTK3Caifairo rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or cairocffi).

Qt4Agg

Agg rendering to a Qt4 canvas (requires PyQt4 or pyside). This backend can be
activated in IPython with Ymatplotlib qt4.

WX-

Agg

Agg rendering to a wxWidgets canvas (requires wxPython 4). This backend can
be activated in IPython with Ymatplotlib wx.

Note: The names of builtin backends case-insensitive; e.g., '‘Qt5Agg’ and 'qtbagg’ are equiv-

alent.

ipympl

The Jupyter widget ecosystem is moving too fast to support directly in Matplotlib. To install

ipympl

pip install ipympl
jupyter nbextension enable --py --sys-prefix ipympl

or

conda install ipympl -c conda-forge

See jupyter-matplotlib for more details.

How do |

select PyQt4 or PySide?

The @T_API environment variable can be set to either pyqt or pyside to use PyQt4 or PySide,
respectively.

Since the default value for the bindings to be used is PyQt4, Matplotlib first tries to import it,
if the import fails, it tries to import PySide.

2.1. Introductory 21

https://riverbankcomputing.com/software/pyqt/intro
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://docs.python.org/3/library/tk.html
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://riverbankcomputing.com/software/pyqt/intro
https://www.wxpython.org/
https://github.com/matplotlib/jupyter-matplotlib

Matplotlib, Release 3.3.0

Using non-builtin backends

More generally, any importable backend can be selected by using any of the methods above. If
name.of .the.backend is the module containing the backend, use module://name.of.the.backend
as the backend name, e.g. matplotlib.use('module://name.of.the.backend').

What is interactive mode?

Use of an interactive backend (see What is a backend?) permits-but does not by itself re-
quire or ensure-plotting to the screen. Whether and when plotting to the screen occurs, and
whether a script or shell session continues after a plot is drawn on the screen, depends on
the functions and methods that are called, and on a state variable that determines whether
matplotlib is in “interactive mode”. The default Boolean value is set by the matplotlibrc file,
and may be customized like any other configuration parameter (see Customizing Matplotlib
with style sheets and rcParams). It may also be set via matplotlib.interactive(), and its value
may be queried via matplotlib.is_interactive(). Turning interactive mode on and off in the
middle of a stream of plotting commands, whether in a script or in a shell, is rarely needed and
potentially confusing, so in the following we will assume all plotting is done with interactive
mode either on or off.

Note: Major changes related to interactivity, and in particular the role and behavior of
show(), were made in the transition to matplotlib version 1.0, and bugs were fixed in 1.0.1.
Here we describe the version 1.0.1 behavior for the primary interactive backends, with the
partial exception of macosx.

Interactive mode may also be turned on via matplotlib.pyplot.ion(), and turned off via
matplotlib.pyplot.ioff().

Note: Interactive mode works with suitable backends in ipython and in the ordinary python
shell, but it does not work in the IDLE IDE. If the default backend does not support interac-
tivity, an interactive backend can be explicitly activated using any of the methods discussed
in What is a backend?.

Interactive example

From an ordinary python prompt, or after invoking ipython with no options, try this:

import matplotlib.pyplot as plt
plt.ion()
plt.plot([1.6, 2.7])

This will pop up a plot window. Your terminal prompt will remain active, so that you can type
additional commands such as:

plt.title("interactive test")
plt.xlabel("index")

On most interactive backends, the figure window will also be updated if you change it via the
object-oriented interface. E.g. get a reference to the 4zes instance, and call a method of that
instance:

22 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

ax = plt.gcaQ)
ax.plot([3.1, 2.2])

If you are using certain backends (like macosx), or an older version of matplotlib, you may not
see the new line added to the plot immediately. In this case, you need to explicitly call draw()
in order to update the plot:

plt.draw()

Non-interactive example

Start a fresh session as in the previous example, but now turn interactive mode off:

import matplotlib.pyplot as plt
plt.ioff ()
plt.plot([1.6, 2.7])

Nothing happened-or at least nothing has shown up on the screen (unless you are using
macosx backend, which is anomalous). To make the plot appear, you need to do this:

plt.show()

Now you see the plot, but your terminal command line is unresponsive; pyplot.show() blocks
the input of additional commands until you manually kill the plot window.

What good is this-being forced to use a blocking function? Suppose you need a script that
plots the contents of a file to the screen. You want to look at that plot, and then end the script.
Without some blocking command such as show(), the script would flash up the plot and then
end immediately, leaving nothing on the screen.

In addition, non-interactive mode delays all drawing until show () is called; this is more efficient
than redrawing the plot each time a line in the script adds a new feature.

Prior to version 1.0, show() generally could not be called more than once in a single script
(although sometimes one could get away with it); for version 1.0.1 and above, this restriction
is lifted, so one can write a script like this:

import numpy as np
import matplotlib.pyplot as plt

plt.ioff ()

for i in range(3):
plt.plot(np.random.rand(10))
plt.show()

which makes three plots, one at a time. I.e. the second plot will show up, once the first plot
is closed.

Summary

In interactive mode, pyplot functions automatically draw to the screen.

When plotting interactively, if using object method calls in addition to pyplot functions, then
call draw() whenever you want to refresh the plot.

2.1. Introductory 23

Matplotlib, Release 3.3.0

Use non-interactive mode in scripts in which you want to generate one or more figures and
display them before ending or generating a new set of figures. In that case, use show() to
display the figure(s) and to block execution until you have manually destroyed them.

Performance

Whether exploring data in interactive mode or programmatically saving lots of plots, render-
ing performance can be a painful bottleneck in your pipeline. Matplotlib provides a couple
ways to greatly reduce rendering time at the cost of a slight change (to a settable tolerance)
in your plot’s appearance. The methods available to reduce rendering time depend on the
type of plot that is being created.

Line segment simplification

For plots that have line segments (e.g. typical line plots, outlines of polygons, etc.),
rendering performance can be controlled by rcParams["path.simplify"] (default: True) and
rcParams["path.simplify_threshold"] (default: 0.111111111111), which can be defined e.g.
in the matplotlibrc file (see Customizing Matplotlib with style sheets and rcParams for
more information about the matplotlibrc file). rcParams["path.simplify"] (default: True) is
a boolean indicating whether or not line segments are simplified at all. rcParams["path.
simplify_threshold"] (default: 0.111111111111) controls how much line segments are simpli-
fied; higher thresholds result in quicker rendering.

The following script will first display the data without any simplification, and then display the
same data with simplification. Try interacting with both of them:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

Setup, and create the data to plot

y = np.random.rand(100000)

y[50000:]1 *= 2

y[np.geomspace (10, 50000, 400).astype(int)]
mpl.rcParams['path.simplify'] = True

1]
|
-

mpl.rcParams['path.simplify_threshold'] = 0.0
plt.plot(y)
plt.show()

I
[y
o

mpl.rcParams['path.simplify_threshold']
plt.plot(y)
plt.show()

Matplotlib currently defaults to a conservative simplification threshold of 1/9. If you want
to change your default settings to use a different value, you can change your matplotlibrc
file. Alternatively, you could create a new style for interactive plotting (with maximal simpli-
fication) and another style for publication quality plotting (with minimal simplification) and
activate them as necessary. See Customizing Matplotlib with style sheets and rcParams for
instructions on how to perform these actions.

The simplification works by iteratively merging line segments into a single vector until the
next line segment’s perpendicular distance to the vector (measured in display-coordinate
space) is greater than the path.simplify_threshold parameter.

24 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=path.simplify#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=path.simplify#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Note: Changes related to how line segments are simplified were made in version 2.1. Ren-
dering time will still be improved by these parameters prior to 2.1, but rendering time for
some kinds of data will be vastly improved in versions 2.1 and greater.

Marker simplification

Markers can also be simplified, albeit less robustly than line segments. Marker simplification
is only available to Line2D objects (through the markevery property). Wherever Line2D con-
struction parameters are passed through, such as matplotlib.pyplot.plot() and matplotlibd.
azes.Azes.plot (), the markevery parameter can be used:

plt.plot(x, y, markevery=10)

The markevery argument allows for naive subsampling, or an attempt at evenly spaced (along
the x axis) sampling. See the /gallery/lines bars and markers/markevery demo for more in-
formation.

Splitting lines into smaller chunks

If you are using the Agg backend (see What is a backend?), then you can make use of
rcParams["agg.path.chunksize"] (default: 0) This allows you to specify a chunk size, and any
lines with greater than that many vertices will be split into multiple lines, each of which has
no more than agg.path.chunksize many vertices. (Unless agg.path.chunksize is zero, in which
case there is no chunking.) For some kind of data, chunking the line up into reasonable sizes
can greatly decrease rendering time.

The following script will first display the data without any chunk size restriction, and then
display the same data with a chunk size of 10,000. The difference can best be seen when the
figures are large, try maximizing the GUI and then interacting with them:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl
mpl.rcParams['path.simplify_threshold'] = 1.0

Setup, and create the data to plot

y = np.random.rand(100000)

y[50000:] *= 2

y [np.geomspace (10, 50000, 400).astype(int)] = -1
mpl.rcParams['path.simplify'] = True

]
o

mpl.rcParams['agg.path.chunksize']
plt.plot(y)
plt.show()

mpl.rcParams['agg.path.chunksize'] = 10000
plt.plot(y)
plt.show()

2.1. Introductory 25

../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Legends

The default legend behavior for axes attempts to find the location that covers the fewest data
points (loc='best'). This can be a very expensive computation if there are lots of data points.
In this case, you may want to provide a specific location.

Using the fast style

The fast style can be used to automatically set simplification and chunking parameters to
reasonable settings to speed up plotting large amounts of data. It can be used simply by
running:

import matplotlib.style as mplstyle
mplstyle.use('fast"')

It is very light weight, so it plays nicely with other styles, just make sure the fast style is
applied last so that other styles do not overwrite the settings:

mplstyle.use(['dark_background', 'ggplot', 'fast'])

Total running time of the script: (0 minutes 2.189 seconds)

2.1.2 Pyplot tutorial

An introduction to the pyplot interface.

Intro to pyplot

matplotlib.pyplot is a collection of functions that make matplotlib work like MATLAB. Each
pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area
in a figure, plots some lines in a plotting area, decorates the plot with labels, etc.

In matplotlidb.pyplot various states are preserved across function calls, so that it keeps track
of things like the current figure and plotting area, and the plotting functions are directed to
the current axes (please note that "axes” here and in most places in the documentation refers
to the axes part of a figure and not the strict mathematical term for more than one axis).

Note: the pyplot API is generally less-flexible than the object-oriented API. Most of the
function calls you see here can also be called as methods from an Axes object. We recommend
browsing the tutorials and examples to see how this works.

Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 41)
plt.ylabel('some numbers')
plt.show()

26 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

4.0

3.5 T

3.0

2.5

some numbers

2.0 1

1.5+

1.0+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide
a single list or array to pilot, matplotlib assumes it is a sequence of y values, and automatically
generates the x values for you. Since python ranges start with 0, the default x vector has the
same length as y but starts with 0. Hence the x data are [0, 1, 2, 3].

plot is a versatile function, and will take an arbitrary number of arguments. For example, to
plot x versus y, you can write:

plt.plot([1, 2, 3, 41, [1, 4, 9, 16])

2.1. Introductory 27

Matplotlib, Release 3.3.0

16 ~

14 -

12 ~

10 ~

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7£f08b461d370>]

Formatting the style of your plot

For every x, y pair of arguments, there is an optional third argument which is the format string
that indicates the color and line type of the plot. The letters and symbols of the format string
are from MATLAB, and you concatenate a color string with a line style string. The default
format string is ‘b-’, which is a solid blue line. For example, to plot the above with red circles,
you would issue

plt.plot([1l, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

28 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

20.0

17.5 4

15.0 +

12.5 +

10.0 +

7.5 4

5.0 -

2.5 1

0.0

See the piot documentation for a complete list of line styles and format strings. The azis func-
tion in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport
of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric pro-
cessing. Generally, you will use numpy arrays. In fact, all sequences are converted to numpy
arrays internally. The example below illustrates plotting several lines with different format
styles in one function call using arrays.

import numpy as np

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 't--', t, t**2, 'bs', t, t**3, 'g"')
plt.show()

2.1. Introductory 29

http://www.numpy.org

Matplotlib, Release 3.3.0

A
100 - K
A
80 1
A
A
60 1
A
A
40 - N
A
A
] N gn® .
]
A gunn® .
m I
0 I--I-.—.-I-I—I-.--.-.-—.-—. --------------
T T T I I I
)] 1 2 3 A :

Plotting with keyword strings

There are some instances where you have data in a format that lets you access particular
variables with strings. For example, with numpy.recarray or pandas.DataFrame.

Matplotlib allows you provide such an object with the data keyword argument. If provided,
then you may generate plots with the strings corresponding to these variables.

data = {'a': np.arange(50),

'c': np.random.randint (0, 50, 50),

'd': np.random.randn(50)}
datal['b'] = datal['a'] + 10 * np.random.randn(50)
datal['d'] = np.abs(datal['d']) * 100

plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')

plt.ylabel('entry b')

plt.show()

30 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.3.0

60

50 4

40 A

entry b

20 4 e ©

10 - ° .

-10 | |

30 + .

20

entry a

Plotting with categorical variables

40

It is also possible to create a plot using categorical variables. Matplotlib allows you to pass
categorical variables directly to many plotting functions. For example:

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

plt.figure(figsize=(9, 3))
plt.subplot(131)

plt.bar (names, values)
plt.subplot(132)

plt.scatter(names, values)
plt.subplot(133)

plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

2.1.

Introductory

31

Matplotlib, Release 3.3.0

Categorical Plotting

100 - 100 - ® 100 |

80 80 80 -

60 - 60 60

40 40 4 40

50 4 20 - 20 A
L

o 01® 01

group_a group_b group_c group_a group_b group_c group_a group_b group_c

Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib. lines.Line2D. There are several ways to set line properties

* Use keyword args:

plt.plot(x, y, linewidth=2.0)

* Use the setter methods of a Line2D instance. plot returns a list of Line2D objects; e.g.,

linel, line2 = plot(xl, yl1, x2, y2). In the code below we will suppose that we have
only one line so that the list returned is of length 1. We use tuple unpacking with line,
to get the first element of that list:

line, = plt.plot(x, y, '-')
line.set_antialiased(False) # turn off antialiasing

Use setp. The example below uses a MATLAB-style function to set multiple properties
on a list of lines. setp works transparently with a list of objects or a single object. You
can either use python keyword arguments or MATLAB-style string/value pairs:

lines = plt.plot(xl, y1, x2, y2)

use keyword args

plt.setp(lines, color='r', linewidth=2.0)

or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

Here are the available Line2D properties.

Property Value Type

alpha float

animated [True | False]

antialiased or aa [True | False]

clip box a matplotlib.transform.Bbox instance

clip on [True | False]

clip path a Path instance and a Transform instance, a Patch
color or c any matplotlib color

contains the hit testing function

dash capstyle ['butt' | 'round' | 'projecting']

Continued on next page

32

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Table 1 — continued from previous page

Property Value Type

dash joinstyle ['miter' | 'round' | 'bevel']

dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string

linestyle or Is ['=r]r—=""=."]":" | 'steps' | ...]
linewidth or Iw float value in points

marker [|+||r’|||‘|||1v||2||13|||4|]

markeredgecolor or mec

any matplotlib color

markeredgewidth or mew

float value in points

markerfacecolor or mfc

any matplotlib color

markersize or ms

float

markevery [None | integer | (startind, stride)]

picker used in interactive line selection
pickradius the line pick selection radius

solid capstyle ['butt' | 'round' | 'projecting']

solid _joinstyle ['miter' | 'round' | 'bevel']

transform a matplotlib.transforms.Transform instance
visible [True | False]

xdata np.array

ydata np.array

zorder any number

To get a list of settable line properties, call the setp function with a line or lines as argument

In [69]: lines = plt.plot([1, 2, 3]1)

In [70]: plt.setp(lines)

alpha: float
[True | False]
antialiased or aa: [True | False]

animated:

...snip

Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting
functions apply to the current axes. The function gca returns the current axes (a matplotiib.
azes.Azes instance), and gcf returns the current figure (a matplotlib. figure.Figure instance).
Normally, you don’t have to worry about this, because it is all taken care of behind the scenes.
Below is a script to create two subplots.

def f(t):
return np.exp(-t) * np.cos(2+np.pi*t)

t1
t2

np.arange(0.0, 5.0, 0.1)
np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(tl, £(t1),

'bo', t2, £(t2), 'k')

(continues on next page)

2.1. Introductory 33

Matplotlib, Release 3.3.0

(continued from previous page)

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

1.0+

0.5 4

0.0 4

_0.5 -

1049 = -~ FaY P “\ !
0.5 . [
0.0 1

_'U.S . 1
\

-1.0 - hd b

The figure call here is optional because figure(1) will be created by default, just as a
subplot (111) will be created by default if you don’t manually specify any axes. The subplot call
specifies numrows, numcols, plot_number where plot_number ranges from 1 to numrows*numcols.
The commas in the subplot call are optional if numrows*numcols<10. So subplot(211) is identical
to subplot(2, 1, 1).

You can create an arbitrary number of subplots and axes. If you want to place an axes man-
ually, i.e., not on a rectangular grid, use azes, which allows you to specify the location as
axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates.
See /gallery/subplots axes and figures/axes demo for an example of placing axes manually
and /gallery/subplots axes and figures/subplot demo for an example with lots of subplots.

You can create multiple figures by using multiple figure calls with an increasing figure num-
ber. Of course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt

plt.figure(1) # the first figure

plt.subplot(211) # the first subplot in the first figure
plt.plot([1, 2, 31)

(continues on next page)

34 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

plt.subplot(212) # the second subplot in the first figure
plt.plot([4, 5, 6])

plt.figure(2) # a second figure

plt.plot([4, 5, 61) # creates a subplot(111) by default
plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figurel current

plt.title('Easy as 1, 2, 3') # subplot 211 title

You can clear the current figure with cif and the current axes with cia. If you find it annoying
that states (specifically the current image, figure and axes) are being maintained for you
behind the scenes, don’t despair: this is just a thin stateful wrapper around an object oriented
API, which you can use instead (see Artist tutorial)

If you are making lots of figures, you need to be aware of one more thing: the memory required
for a figure is not completely released until the figure is explicitly closed with ciose. Deleting
all references to the figure, and/or using the window manager to kill the window in which the
figure appears on the screen, is not enough, because pyplot maintains internal references
until close is called.

Working with text

tezt can be used to add text in an arbitrary location, and zlabel, ylabel and title are used to
add text in the indicated locations (see Text in Matplotlib Plots for a more detailed example)

mu, sigma = 100, 15
X = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, demnsity=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')

plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

2.1. Introductory 35

Matplotlib, Release 3.3.0

Histogram of 1Q

0.030

0.025 ~

0.020 ~

0.015 ~

Probability

0.010 ~

0.005 ~

0.000 -
40 60 80 100 120 140 160

Smarts

All of the tezt functions return a matplotiib. text. Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or
using setp:

t = plt.xlabel('my data', fontsize=14, color='red')

These properties are covered in more detail in Text properties and layout.

Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the
expression o; = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r'$\sigma_i=15%")

The r preceding the title string is important - it signifies that the string is a raw string and not
to treat backslashes as python escapes. matplotlib has a built-in TeX expression parser and
layout engine, and ships its own math fonts - for details see Writing mathematical expressions.
Thus you can use mathematical text across platforms without requiring a TeX installation.
For those who have LaTeX and dvipng installed, you can also use LaTeX to format your text
and incorporate the output directly into your display figures or saved postscript - see Text
rendering With LaTeX.

36 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Annotating text

The uses of the basic tezt function above place text at an arbitrary position on the Axes. A
common use for text is to annotate some feature of the plot, and the annotate method pro-
vides helper functionality to make annotations easy. In an annotation, there are two points
to consider: the location being annotated represented by the argument xy and the location of
the text xytext. Both of these arguments are (x, y) tuples.

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05),

)

plt.ylim(-2, 2)
plt.show()

2.0

1.5 local max

1.0+
0.5 A
0.0
—0.5 4
—1.0

1.5 4

=2.0 T

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in
data coordinates. There are a variety of other coordinate systems one can choose - see
Basic annotation and Advanced Annotations for details. More examples can be found in
/gallery/text labels and annotations/annotation demo.

2.1. Introductory 37

Matplotlib, Release 3.3.0

Logarithmic and other nonlinear axes

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and logit scales.
This is commonly used if data spans many orders of magnitude. Changing the scale of an axis
is easy:

plt.xscale(’log’)

An example of four plots with the same data and different scales for the y axis is shown below.

Fizing random state for reproducibility
np.random.seed (19680801)

make up some data in the open interval (0, 1)

= np.random.normal(loc=0.5, scale=0.4, size=1000)
yl(y >0 & (y < 1]

.sort()

= np.arange(len(y))

Mo
[}

plot with various azes scales
plt.figure()

linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)

log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log")
plt.grid(True)

symmetric log

plt.subplot (223)

plt.plot(x, y - y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog')

plt.grid(True)

logtt

plt.subplot(224)

plt.plot(x, y)

plt.yscale('logit')

plt.title('logit"')

plt.grid(True)

Adjust the subplot layout, because the logit one may take more space

than usual, due to y-tick labels like "1 - 107{-3}"

plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)

plt.show()

38 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

linear log
1.0 109 -
0.8 1
0.6 lﬂ_l E
0.4 -
0.2 -
1072 3
DIG_ T T T T T : T T T T T
0 200 400 600 800 0 200 400 600 800
symlog logit
lo-1] 1-1073 3
10-2 | 1-1077 7
0 1-1071 7
14
—10-2 -]
10 10-1]
—10-1 1 3
1072 3
T T T T T T T T T T
0 200 400 600 800 0 200 400 600 800

It is also possible to add your own scale, see Developer’s guide for creating scales and trans-
formations for details.

Total running time of the script: (0 minutes 3.387 seconds)
2.1.3 Sample plots in Matplotlib

Here you’ll find a host of example plots with the code that generated them.

Line Plot

Here’s how to create a line plot with text labels using plot ().

Multiple subplots in one figure

Multiple axes (i.e. subplots) are created with the subpilot () function:

Images

Matplotlib can display images (assuming equally spaced horizontal dimensions) using the
imshow() function.

2.1. Introductory 39

Matplotlib, Release 3.3.0

voltage (mV)

Damped oscillation

Undamped

Fig. 3:

About as simple as it gets, folks

2.001

1754

1.50 4

1.254

1.00 4

0.75 4

0.50 4

0.25 4

0.00 4

r r T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
time (s)

Fig. 1: Simple Plot

A tale of 2 subplots

1.0+

0.5 4

0.0 4

—0.5

o4
-
[N]
w
S
w4

104

0.5 1

0.0 4

—0.5

—~1.04

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
time (s)

Fig. 2: Subplot

CT density

25

20

15

10

Example of using imshow() to display a CT scan

40

Chapter 2. Tutorials

../../gallery/lines_bars_and_markers/simple_plot.html
../../gallery/subplots_axes_and_figures/subplot.html
../../gallery/images_contours_and_fields/image_demo.html

Matplotlib, Release 3.3.0

Contouring and pseudocolor

The pcolormesh () function can make a colored representation of a two-dimensional array, even
if the horizontal dimensions are unevenly spaced. The contour() function is another way to
represent the same data:

Fig. 4: Example comparing pcolormesh() and contour() for plotting two-dimensional data

Histograms

The rist () function automatically generates histograms and returns the bin counts or proba-
bilities:

Histogram of 1Q: p =100, =15

0.035 1

0.030 4

e
o
N
w

0.020 1

Probability density
o
o
=1
o

0.010 4

0.005 1

0.000 -

Smarts

Fig. 5: Histogram Features

Paths

You can add arbitrary paths in Matplotlib using the matpiotiib.path module:

2.1. Introductory 41

../../gallery/images_contours_and_fields/pcolormesh_levels.html
../../gallery/statistics/histogram_features.html

Matplotlib, Release 3.3.0

Fig. 6: Path Patch

Three-dimensional plotting

The mplot3d toolkit (see Getting started and mplot3d-examples-index) has support for simple
3d graphs including surface, wireframe, scatter, and bar charts.

0.5
0.0

—=0.5

Fig. 7: Surface3d

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the mplot3d toolkit.
This toolkit is included with all standard Matplotlib installs.

Streamplot

The streamplot () function plots the streamlines of a vector field. In addition to simply plotting
the streamlines, it allows you to map the colors and/or line widths of streamlines to a separate
parameter, such as the speed or local intensity of the vector field.

This feature complements the quiver() function for plotting vector fields. Thanks to Tom
Flannaghan and Tony Yu for adding the streamplot function.

42 Chapter 2. Tutorials

../../gallery/shapes_and_collections/path_patch.html
../../gallery/mplot3d/surface3d.html

Matplotlib, Release 3.3.0

-3

Varying Density

W

% N

\

o

-3 -2 -1
Varying Line Width

0 1 2 3

Streamplot with Masking

:_ \yz

0.0
-2.5
-5.0
=15
-10.0
=125

0.0
-2.5
-5.0
=15
-10.0
-12.5

Fig. 8: Streamplot with various plotting options.

2.1.

Introductory

43

../../gallery/images_contours_and_fields/plot_streamplot.html

Matplotlib, Release 3.3.0

Ellipses

In support of the Phoenix mission to Mars (which used Matplotlib to display ground tracking
of spacecraft), Michael Droettboom built on work by Charlie Moad to provide an extremely
accurate 8-spline approximation to elliptical arcs (see 4rc), which are insensitive to zoom
level.

Fig. 9: Ellipse Demo

Bar charts

Use the bar () function to make bar charts, which includes customizations such as error bars:

Johnny Doe
push s - iy [
ey _ I gc
0
IS
1252 S
Mile Run 73rd " min-sec 7
' o
ki
Flexed Arm 95th | 48
Hang sec
paeerTest _ 37th I :
laps

T T
0 10 20 30 40 50 60 70 80 920 100

Percentile Ranking Across 2nd Grade Boys
Cohort Size: 62

Fig. 10: Barchart Demo

44 Chapter 2. Tutorials

http://www.jpl.nasa.gov/news/phoenix/main.php
../../gallery/shapes_and_collections/ellipse_demo.html
../../gallery/statistics/barchart_demo.html

Matplotlib, Release 3.3.0

You can also create stacked bars (bar stacked.py), or horizontal bar charts (barh.py).

Pie charts

The pie () function allows you to create pie charts. Optional features include auto-labeling the
percentage of area, exploding one or more wedges from the center of the pie, and a shadow
effect. Take a close look at the attached code, which generates this figure in just a few lines

of code.

Hogs

Tables

Fig. 11: Pie Features

The table() function adds a text table to an axes.

Loss by Disaster

2000 -

1500 4

1000 A

Loss in $1000's

0 T Freeze Wind Flood uake Hall
4315 1049.4 799.6 LER 9179
ear 292.2 717.8 456.4 1368.5 865.6
ear 213.8 636.0 305.7 1175.2 796.0
ear 1246 555.4 3.2 677.2 1925
664 1743 5T o779 32.0

ear

Fig. 12: Table Demo

2.1. Introductory

45

../../gallery/lines_bars_and_markers/bar_stacked.html
../../gallery/lines_bars_and_markers/barh.html
../../gallery/pie_and_polar_charts/pie_features.html
../../gallery/misc/table_demo.html

Matplotlib, Release 3.3.0

Scatter plots

The scatter() function makes a scatter plot with (optional) size and color arguments. This
example plots changes in Google’s stock price, with marker sizes reflecting the trading volume
and colors varying with time. Here, the alpha attribute is used to make semitransparent circle

markers.
Volume and percent change
0.20 @
0.15 4 &
0.10 4
T oos{-e LS. p
g "“a Cb
0.00 &
‘C\y L 4
. ’ @ = ’g o
—0.05 + @
—0.10 4
L]
010 -0.05 0.00 0.05 0.10 015 020
4
Fig. 13: Scatter Demo2
GUI widgets

Matplotlib has basic GUI widgets that are independent of the graphical user interface you
are using, allowing you to write cross GUI figures and widgets. See matplotlib.widgets and

the widget examples.

® red
© blue 0
o green
54
—4 4
T T T T
0.0 0.2 0.4 0.6 0.8
Amp I] 5.0
Freq [5.1

Fig. 14: Slider and radio-button GUI.

Filled curves

The fi11() function lets you plot filled curves and polygons:

46

Chapter 2. Tutorials

../../gallery/lines_bars_and_markers/scatter_demo2.html
../../gallery/index.html
../../gallery/widgets/slider_demo.html

Matplotlib, Release 3.3.0

-2 4

Fig. 15: Fill

Thanks to Andrew Straw for adding this function.

Date handling

You can plot timeseries data with major and minor ticks and custom tick formatters for both.
See matplotlib.ticker and matplotlidb.dates for details and usage.

Log plots

The semilogz (), semilogy () and loglog() functions simplify the creation of logarithmic plots.

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling in-
frastructure.

Polar plots

The polar() function generates polar plots.

Legends

The legend() function automatically generates figure legends, with MATLAB-compatible
legend-placement functions.

2.1. Introductory 47

../../gallery/lines_bars_and_markers/fill.html

Matplotlib, Release 3.3.0

700
600
500
400 A
300 4
200 4
100 A
; T T ;
By
2° 1,‘3“" 19“6 1,‘3“1 1})“% 1,‘3"9
Fig. 16: Date
semilogy semilogx
100 4 1.0 -
0.5 A
0.0 A
10714
0.5 4
-1.0 A
i " ; T ; T T " :
0 5 10 15 20 10-2 10-1 100 101
loglog base 2 on x Errorbars go negative
1
2x10 104 4
103 §
10! 4
102 4
0
6x10 10! 4
0
4x10 10° 4
3x100
T T T T 1071 -t T T
273 272 2t 2% 10° 10! 10?

Fig. 17: Log Demo

A line plot on a polar axis
90°

Fig. 18: Polar Demo

48

Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/date.html
../../gallery/scales/log_demo.html
../../gallery/pie_and_polar_charts/polar_demo.html

Matplotlib, Release 3.3.0

Thanks to Charles Twardy

TeX-notation for text objects

20.01

17.5 4

15.0 4

12.54

10.0 4

7.5 1

5.0 1

2.5 4

Fig. 19: Legend

for input on the legend function.

Below is a sampling of the many TeX expressions now supported by Matplotlib’s internal
mathtext engine. The mathtext module provides TeX style mathematical expressions using
FreeType and the DejaVu, BaKoMa computer modern, or STIX fonts. See the matplotlibd.
mathtezt module for additional details.

Matplotlib's math rendering engine

- 5 28 _ 1B
S s i
510102 61p1 T Bn2d g, "2 U

Subscripts and superscripts:
a;> B, al,, =sin(2nfit)e 34T, .
Fractions, binomials and stacked numbers:
A CY
'4'! 4 ’ 4 ’ _4_ P s

Radicals:

V2, ¥x, ...

Fonts:

Roman , [talic, Typewriter or CALLIGRAPHY
Accents:

a, a a,a, a a a a a xyz, Xyz, ...

Greek, Hebrew:

a, B, x. 6, A u, AT, Q @ 1,Y, V, R 3, 7, 1,

Delimiters, functions and Symbols:

Ll f § 1. 2. log, sin, =, @, », x, =, 3, R,

Fig. 20: Mathtext Examples

Matplotlib’s mathtext infrastructure is an independent implementation and does not require

2.1. Introductory

49

../../gallery/text_labels_and_annotations/legend.html
https://www.freetype.org/
http://www.stixfonts.org
../../gallery/text_labels_and_annotations/mathtext_examples.html

Matplotlib, Release 3.3.0

TeX or any external packages installed on your computer. See the tutorial at Writing mathe-
matical expressions.

Native TeX rendering

Although Matplotlib’s internal math rendering engine is quite powerful, sometimes you need
TeX. Matplotlib supports external TeX rendering of strings with the usetex option.

TeX is Number Z ;'

3.00 4
2.75 4
o 250

2.25 4

(*/se

2.00 4

1.75 4

Velocity

1.50 4

1.25 4

1.00 4

00 02 04 06 08 1o
time (s)

Fig. 21: Tex Demo

EEG GUI

You can embed Matplotlib into pygtk, wx, Tk, or Qt applications. Here is a screenshot of an
EEG viewer called pbrain.

50 Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/tex_demo.html
https://github.com/nipy/pbrain

Matplotlib, Release 3.3.0

% EEG Viewer and Analyzer =

File Patients View Compute Help

< 4 b 1 GE A vie=D®E@ J

'Message: Electrode: RTG12 &

The lower axes uses specgram() to plot the spectrogram of one of the EEG channels.
For examples of how to embed Matplotlib in different toolkits, see:

* /gallery/user interfaces/embedding in gtk3 sgskip

» /gallery/user interfaces/embedding in wx2 sgskip

* /gallery/user interfaces/mpl with glade3 sgskip

» /gallery/user interfaces/embedding in qt sgskip

* /gallery/user interfaces/embedding in tk sgskip

XKCD-style sketch plots

Just for fun, Matplotlib supports plotting in the style of xkcd.

2.1. Introductory 51

https://www.xkcd.com/

Matplotlib, Release 3.3.0

THE DAY I REALIZED
I COULD COOK BACON
WHENEVER I WANTED

my overall health

time

"Stove Ownership® from xkcd by Randall Munroe

Fig. 22: xkcd
Subplot example

Many plot types can be combined in one figure to create powerful and flexible representations
of data.

52 Chapter 2. Tutorials

../../gallery/showcase/xkcd.html

Matplotlib, Release 3.3.0

import matplotlib.pyplot as plt
import numpy as np

np.random.seed (19680801)
data = np.random.randn(2, 100)

fig, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(datal[0])

axs[1, 0].scatter(datal[0], datal[1])

axs[0, 1].plot(datal[0], data[1])

axs[1, 1].hist2d(datal[0], datal[1])

plt.show()

2.1.4 Image tutorial

A short tutorial on plotting images with Matplotlib.

Startup commands

First, let’s start IPython. It is a most excellent enhancement to the standard Python prompt,
and it ties in especially well with Matplotlib. Start IPython either directly at a shell, or with
the Jupyter Notebook (where IPython as a running kernel).

With IPython started, we now need to connect to a GUI event loop. This tells IPython where
(and how) to display plots. To connect to a GUI loop, execute the %omatplotlib magic at your
IPython prompt. There’s more detail on exactly what this does at [Python’s documentation
on GUI event loops.

If you're using Jupyter Notebook, the same commands are available, but people commonly
use a specific argument to the %matplotlib magic:

In [1]: Ymatplotlib inline

This turns on inline plotting, where plot graphics will appear in your notebook. This has
important implications for interactivity. For inline plotting, commands in cells below the cell
that outputs a plot will not affect the plot. For example, changing the color map is not possible
from cells below the cell that creates a plot. However, for other backends, such as Qt5, that
open a separate window, cells below those that create the plot will change the plot - it is a
live object in memory.

This tutorial will use Matplotlib’s imperative-style plotting interface, pyplot. This interface
maintains global state, and is very useful for quickly and easily experimenting with various
plot settings. The alternative is the object-oriented interface, which is also very powerful,
and generally more suitable for large application development. If you’d like to learn about
the object-oriented interface, a great place to start is our Usage guide. For now, let’s get on
with the imperative-style approach:

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

2.1. Introductory 53

https://ipython.readthedocs.io/en/stable/interactive/reference.html#gui-event-loop-support
https://ipython.readthedocs.io/en/stable/interactive/reference.html#gui-event-loop-support

Matplotlib, Release 3.3.0

Importing image data into Numpy arrays

Matplotlib relies on the Pillow library to load image data.

Here’s the image we’re going to play with:

It’s a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your
data, the other kinds of image that you’ll most likely encounter are RGBA images, which allow
for transparency, or single-channel grayscale (luminosity) images. You can right click on it
and choose ”"Save image as” to download it to your computer for the rest of this tutorial.

And here we go...

img = mpimg.imread('../../doc/_static/stinkbug.png')
print (img)

Out:

[[[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

(continues on next page)

54 Chapter 2. Tutorials

https://pillow.readthedocs.io/en/latest/

Matplotlib, Release 3.3.0

(continued from previous page)

[[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

[[0.41960785 0.41960785 0.41960785]
[0.41568628 0.41568628 0.41568628]
[0.41568628 0.41568628 0.41568628]

[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]]

[[0.4392157 0.4392157 0.4392157]
[0.43529412 0.43529412 0.43529412]
[0.43137255 0.43137255 0.43137255]

[0.45490196 0.45490196 0.45490196]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804 1]

[[0.44313726 0.44313726 0.44313726]
[0.44313726 0.44313726 0.44313726]
[0.4392157 0.4392157 0.4392157]

[0.4509804 0.4509804 0.4509804]
[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]]

[[0.44313726 0.44313726 0.44313726]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804]

[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]
[0.44313726 0.44313726 0.44313726]]]

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to
floating point data between 0.0 and 1.0. As a side note, the only datatype that Pillow can work
with is uint8. Matplotlib plotting can handle float32 and uint8, but image reading/writing for
any format other than PNG is limited to uint8 data. Why 8 bits? Most displays can only
render 8 bits per channel worth of color gradation. Why can they only render 8 bits/channel?
Because that’s about all the human eye can see. More here (from a photography standpoint):
Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since
it’s a black and white image, R, G, and B are all similar. An RGBA (where A is alpha, or
transparency), has 4 values per inner list, and a simple luminance image just has one value
(and is thus only a 2-D array, not a 3-D array). For RGB and RGBA images, Matplotlib supports
float32 and uint8 data types. For grayscale, Matplotlib supports only float32. If your array
data does not meet one of these descriptions, you need to rescale it.

2.1. Introductory 55

https://luminous-landscape.com/bit-depth/

Matplotlib, Release 3.3.0

Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let’s
render it. In Matplotlib, this is performed using the imshow() function. Here we’ll grab the
plot object. This object gives you an easy way to manipulate the plot from the prompt.

imgplot = plt.imshow(img)

100

150

200

250

300

350

0 100 200 300 400

You can also plot any numpy array.

Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more eas-
ily. This is especially useful when making presentations of your data using projectors - their
contrast is typically quite poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently
have an RGB image. Since R, G, and B are all similar (see for yourself above or in your data),
we can just pick one channel of our data:

lum_img = img[:, :, 0]

This ts array slicing. You can read more in the “Numpy tutorial

(continues on next page)

56 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

<https://docs.scipy.org/doc/numpy/user/quickstart.html>"_.

plt.imshow(lum_img)

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7£08b468d7c0>

Now, with a luminosity (2D, no color) image, the default colormap (aka lookup table, LUT), is
applied. The default is called viridis. There are plenty of others to choose from.

plt.imshow(lum_img, cmap="hot")

2.1. Introductory 57

Matplotlib, Release 3.3.0

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7£f08b3226a90>

Note that you can also change colormaps on existing plot objects using the set_cmap () method:

imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')

58 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Note: However, remember that in the Jupyter Notebook with the inline backend, you can’t
make changes to plots that have already been rendered. If you create imgplot here in one
cell, you cannot call set cmap() on it in a later cell and expect the earlier plot to change. Make
sure that you enter these commands together in one cell. plt commands will not change plots
from earlier cells.

There are many other colormap schemes available. See the list and images of the colormaps.

Color scale reference

It’s helpful to have an idea of what value a color represents. We can do that by adding a color
bar to your figure:

imgplot = plt.imshow(lum_img)
plt.colorbar()

2.1. Introductory 59

../colors/colormaps.html

Matplotlib, Release 3.3.0

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b461d790>

Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a
particular region while sacrificing the detail in colors that don’t vary much, or don’t matter.
A good tool to find interesting regions is the histogram. To create a histogram of our image
data, we use the rist () function.

plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k")

60 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Out:

8000 ~

6000 ~

4000

2000 ~

0.0

0.2

0.8

1.0

(array([2.000e+00, 2.000e+00, 3.000e+00, 3.000e+00, 2.000e+00, 2.000e+00,

3.000e+00,
.000e+00,
.100e+01,
.400e+01,
.700e+01,
.060e+02,
.270e+02,
.230e+02,
.000e+01,
.380e+02,
.390e+02,
.280e+02,
.700e+01,
.070e+02,
.240e+02,
.610e+02,
.690e+02,
.160e+02,
.620e+02,
.200e+02,
.061e+03,
.151e+03,
.332e+03,

AN PFRPOWNRER PP P,PORPRRPERE,ORRERR,ONDDND-SN

1.000e+00,
1.000e+01,
2.400e+01,
2.400e+01,
4.600e+01,
1.130e+02,
1.350e+02,
1.160e+02,
1.060e+02,
1.000e+02,
1.160e+02,
1.
9
9
1
1
1
2
3
6
1
2
5

200e+02,

.700e+01,
.800e+01,
.340e+02,
.380e+02,
.710e+02,
.460e+02,
.760e+02,
.410e+02,
.280e+03,
.290e+03,
.584e+03,

7
1
1
4
8
1
9
1
1
1
1
1.
1
1
1
1
1
2
4
7
1
2
6

.000e+00, 9
.100e+01, 1
.400e+01, 3
.000e+01, 2
.400e+01, 7
.120e+02, 9
.800e+01, 1
.010e+02, 1
.260e+02, 1
.340e+02, 1
.330e+02, 1
210e+02, 1.
.140e+02, 1
.040e+02, 1
.200e+02, 1
.620e+02, 1
.820e+02, 1
.210e+02, 2
.480e+02, 4
.440e+02, 7
.340e+03, 1
.440e+03, 2
.197e+03, 6

.000e+00,
.500e+01,
.100e+01,
.600e+01,
.600e+01,
.000e+01,
.310e+02,
.170e+02,
.040e+02,
.210e+02,
.180e+02,

100e+02,

.070e+02,
.120e+02,
.410e+02,
.570e+02,
.980e+02,
.520e+02,
.630e+02,
.120e+02,
.638e+03,
.758e+03,
.422e+03,

7.000e+00,
1.400e+01,
2.900e+01,
5.200e+01,
8.900e+01,
1.160e+02,
1.230e+02,
1.000e+02,
1.070e+02,
1.400e+02,
1.080e+02,
1.
1
1
1
1
1
2
5
8
1
2
6

160e+02,

.170e+02,
.110e+02,
.520e+02,
.350e+02,
.970e+02,
.890e+02,
.170e+02,
.330e+02,
.740e+03,
.896e+03,
.404e+03,

2.000e+00,
2.700e+01,
2.800e+01,
3.900e+01,
8.000e+01,
1.090e+02,
1.110e+02,
1.010e+02,
1.110e+02,
1.320e+02,
1.170e+02,
1.
8
1
1
1
2
3
6
9
1
3
7

180e+02,

.700e+01,
.180e+02,
.360e+02,
.470e+02,
.060e+02,
.450e+02,
.000e+02,
.290e+02,
.953e+03,
.384e+03,
.181e+03,

(continues on next page)

2.1.

Introductory

61

Matplotlib, Release

3.3.0

(continued from previous page)

.196e+03,
.148e+03,
.472e+03,
.270e+02,
.600e+01,
.200e+01,
.200e+01,
.700e+01,
.000e+01,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,

0.000e+00, O.
01171875, 0.015625

0.01953125,
.0390625 ,
.068569375,
.078125 ,

O OO OONOWWFEKEFLNWOUOULFL O OO
O OO OO, F, WNOWOEF OO O N

.968e+03,
.563e+03,
.268e+03,
.500e+01,
.900e+01,
.300e+01,
.600e+01,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,

O OO O OO O ODODO0ODODODO0ODODODODODODODO0ODO0ODODODO0ODO0OOODOOOOCOOOOOO

.09765625,
.1171875 ,
.13671875,
.15625 s
.17578125,
.1953125 ,
.21484375,
.234375
.25390625,
.2734375 ,
.29296875,
.3125 s
.33203125,
.35156625 ,
.37109375,
.390625 ,
.41015625,
.4296875
.44921875,
.46875 R
.48828125,
.5078125 ,
.52734375,
.546875
.56640625,
.5859375 ,
.60546875,
.625 s
.64453125,
.6640625 ,
.68359375,
.703125

(el elNelNelNe e lNelNelNe Ne e e Ne e e e Ne Ne e Ne Ne He e e Ne Ne e Ne Ne oo Ne oo Ne Nel

OO0 O0OO0OO0OO0OOWR®ONRLB®DNNNO

000e+00,

.0234375 ,
.04296875,
.0625 ,
.08203125,
.1015625 ,
.12109375,
.140625
.16015625,
.1796875 ,
.19921875,
.21875 s
23828125,
.2578125 ,
.27734375,
.296875
.31640625,
.3359375 ,
.35546875,
.375 s
.39453125,
.4140625 ,
.43359375,
.453125
.47265625,
.4921875 ,
.51171875,
.53125 ,
.55078125,
.5703125 ,
.58984375,
.609375
.62890625,
.6484375 ,
.66796875,
.6875 s
.70703125,

.474e+03,
.747e+03,
.864e+03,
.600e+01,
.000e+01,
.200e+01,
.200e+01,
.100e+01,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,
.000e+00,

7
6
3
8
4
2
1
1
5
2.
1
0
0
0
0
0
0
0
0

.02734375,
.046875
.06640625,
.0859375

>

>

.10546875,
.125 R
.14453125,
.1640625 ,
.18359375,
.203125
.22265625,
.2421875 ,
.26171875,
.28125 >
.30078125,
.3203125 ,
.33984375,
.359375
.37890625,
.3984375 ,
.41796875,
.4375 ,
.45703125,
.4765625 ,
.49609375,
.515625 ,
.53515625,
.5546875 ,
.57421875,
.59375 R
.61328125,
.6328125 ,
.65234375,
.671875
.69140625,

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.7109375 ,

.926e+03, 8.460e+03, 8.091e+03,
.074e+03, 6.328e+03, 5.291e+03,
.760e+02, 1.620e+02, 1.180e+02,
.200e+01, 6.200e+01, 6.700e+01,
.200e+01, 3.000e+01, 3.400e+01,
.300e+01, 2.800e+01, 1.900e+01,
.800e+01, 9.000e+00, 1.000e+01,
.300e+01, 8.000e+00, 1.200e+01,
.000e+00, 1.300e+01, 6.000e+00,
000e+00, 1.000e+00, 5.000e+00,
.000e+00, 1.000e+00, 5.000e+00,
.000e+00, 1.000e+00, 1.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00, 0.000e+00, 0.000e+00,
.000e+00]1), array([O0. , 0.00390625, 0.0078125 , 0.
0.03125 , 0.03515625,
0.05078125, 0.0546875 ,
0.0703125 , 0.07421875,
0.08984375, 0.09375 ,
0.109375 , 0.11328125,
0.12890625, 0.1328125 ,
0.1484375 , 0.15234375,
0.16796875, 0.171875 ,
0.1875 , 0.19140625,
0.20703125, 0.2109375 ,
0.2265625 , 0.23046875,
0.24609375, 0.25 ,
0.265625 , 0.26953125,
0.28515625, 0.2890625 ,
0.3046875 , 0.30859375,
0.32421875, 0.328125 ,
0.34375 , 0.34765625,
0.36328125, 0.3671875 ,
0.3828125 , 0.38671875,
0.40234375, 0.40625 ,
0.421875 , 0.42578125,
0.44140625, 0.4453125 ,
0.4609375 , 0.46484375,
0.48046875, 0.484375 ,
0.5 , 0.50390625,
0.519563125, 0.5234375 ,
0.5390625 , 0.54296875,
0.55859375, 0.5625 ,
0.578125 , 0.58203125,
0.59765625, 0.6015625 ,
0.6171875 , 0.62109375,
0.63671875, 0.640625 ,
0.65625 , 0.66015625,
0.67578125, 0.6796875 ,
0.6953125 , 0.69921875,
0.71484375, 0.71875 R

(continues on next page)

62

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

. 72265625,
. 7421875 ,
.76171875,
.78125 s
.80078125,
.8203125 ,
.83984375,
.859375 ,
.87890625,
.8984375 ,
.91796875,
.9375 ,
.95703125,
.9765625
.99609375,

O OO O OO O OO0 OO OO Oo

.7265625 ,
. 74609375,
.765625
. 78515625,
.8046875 ,
.82421875,
.84375 s
.86328125,
.8828125 ,
.90234375,
.921875
.94140625,
.9609375 ,
.98046875,

0
0
0
0
0
0
0
0.
0
0
0
0
0
0.

.73046875,
.75 s
. 76953125,
.7890625 ,
.80859375,
.828125
.84765625,

8671875 ,

.88671875,
.90625 ,
.92578125,
.9453125 ,
.96484375,

984375 ,

0

0.734375 ,
0.75390625,
0.7734375 ,
0.79296875,
0.8125 ,
0.83203125,
0.
0
0
0
0
0
0

8515625 ,

.87109375,
.890625 ,
.91015625,
.9296875 ,
.94921875,
.96875 s
.98828125,

0

.73828125,
.7578125 ,
.77734375,
.796875
.81640625,
.83569375 ,
.85546875,
.875 ,
.89453125,
.9140625 ,
.93359375,
.9563125
.97265625,
.9921875 ,

], dtype=float32), <BarContainer object of 256 artists>)

Most often, the ”interesting” part of the image is around the peak, and you can get extra
contrast by clipping the regions above and/or below the peak. In our histogram, it looks like
there’s not much useful information in the high end (not many white things in the image).
Let’s adjust the upper limit, so that we effectively “zoom in on” part of the histogram. We do
this by passing the clim argument to imshow. You could also do this by calling the set_clim()
method of the image plot object, but make sure that you do so in the same cell as your plot
command when working with the Jupyter Notebook - it will not change plots from earlier cells.

You can specify the clim in the call to plot.

imgplot = plt.imshow(lum_img, clim=(0.0, 0.7))

2.1. Introductory

63

Matplotlib, Release 3.3.0

100

150

200

250

300

350

0 100 200 300 400

You can also specify the clim using the returned object

fig = plt.figure()

ax = fig.add_subplot(l, 2, 1)

imgplot = plt.imshow(lum_img)

ax.set_title('Before')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
ax = fig.add_subplot(l, 2, 2)

imgplot = plt.imshow(lum_img)

imgplot.set_clim(0.0, 0.7)

ax.set_title('After')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')

64 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Before
0 0
100 100
200 200
300 300

0 100 200 300 400 0 100 200 300 400

BT I

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b30b1400>

Array Interpolation schemes

Interpolation calculates what the color or value of a pixel “should” be, according to different
mathematical schemes. One common place that this happens is when you resize an image.
The number of pixels change, but you want the same information. Since pixels are discrete,
there’s missing space. Interpolation is how you fill that space. This is why your images
sometimes come out looking pixelated when you blow them up. The effect is more pronounced
when the difference between the original image and the expanded image is greater. Let’s take
our image and shrink it. We're effectively discarding pixels, only keeping a select few. Now
when we plot it, that data gets blown up to the size on your screen. The old pixels aren’t there
anymore, and the computer has to draw in pixels to fill that space.

We’ll use the Pillow library that we used to load the image also to resize the image.

from PIL import Image

img = Image.open('../../doc/_static/stinkbug.png')
img.thumbnail ((64, 64), Image.ANTIALIAS) # resizes image in-place
imgplot = plt.imshow(img)

2.1. Introductory 65

Matplotlib, Release 3.3.0

Here we have the default interpolation, bilinear, since we did not give imshow() any interpo-
lation argument.

Let’s try some others. Here’s “nearest”, which does no interpolation.

imgplot = plt.imshow(img, interpolation="nearest")

66 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

and bicubic:

imgplot = plt.imshow(img, interpolation="bicubic")

2.1. Introductory 67

Matplotlib, Release 3.3.0

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over
pixelated.

Total running time of the script: (0 minutes 6.795 seconds)

2.1.5 The Lifecycle of a Plot

This tutorial aims to show the beginning, middle, and end of a single visualization using Mat-
plotlib. We’ll begin with some raw data and end by saving a figure of a customized visu-
alization. Along the way we try to highlight some neat features and best-practices using
Matplotlib.

Note: This tutorial is based on this excellent blog post by Chris Moffitt. It was transformed
into this tutorial by Chris Holdgraf.

A note on the Object-Oriented API vs. Pyplot

Matplotlib has two interfaces. The first is an object-oriented (OO) interface. In this case,
we utilize an instance of azes.Azes in order to render visualizations on an instance of figure.
Figure.

68 Chapter 2. Tutorials

http://pbpython.com/effective-matplotlib.html

Matplotlib, Release 3.3.0

The second is based on MATLAB and uses a state-based interface. This is encapsulated in the
pyplot module. See the pyplot tutorials for a more in-depth look at the pyplot interface.

Most of the terms are straightforward but the main thing to remember is that:
* The Figure is the final image that may contain 1 or more Axes.

* The Axes represent an individual plot (don’t confuse this with the word ”axis”, which
refers to the x/y axis of a plot).

We call methods that do the plotting directly from the Axes, which gives us much more flexi-
bility and power in customizing our plot.

Note: In general, try to use the object-oriented interface over the pyplot interface.

Our data

We’'ll use the data from the post from which this tutorial was derived. It contains sales infor-
mation for a number of companies.

import numpy as np
import matplotlib.pyplot as plt

data = {'Barton LLC': 109438.50,
'Frami, Hills and Schmidt': 103569.59,
'Fritsch, Russel and Anderson': 112214.71,
'Jerde-Hilpert': 112591.43,
'Keeling LLC': 100934.30,
'Koepp Ltd': 103660.54,
'Kulas Inc': 137351.96,
'Trantow-Barrows': 123381.38,
'White-Trantow': 135841.99,
'Will LLC': 104437.60}

group_data = list(data.values())

group_names = list(data.keys())

group_mean = np.mean(group_data)

Getting started

This data is naturally visualized as a barplot, with one bar per group. To do this with the
object-oriented approach, we first generate an instance of figure.Figure and azes.Azes. The
Figure is like a canvas, and the Axes is a part of that canvas on which we will make a particular
visualization.

Note: Figures can have multiple axes on them. For information on how to do this, see the
Tight Layout tutorial.

fig, ax = plt.subplots()

2.1. Introductory 69

Matplotlib, Release 3.3.0

1.0

0.8

0.6

0.4

0.2 A

0.0 0.2 0.4 0.6 0.8 1.0

Now that we have an Axes instance, we can plot on top of it.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

70 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Will LLC
‘e-Trantow
w-Barrows

Kulas Inc
Koepp Ltd
geling LLC
de-Hilpert
Anderson
d Schmidt

larton LLC

T T T T T T T
0 20000 40000 0000 80000 100000 120000 140000

Out:

<BarContainer object of 10 artists>

Controlling the style

There are many styles available in Matplotlib in order to let you tailor your visualization to
your needs. To see a list of styles, we can use style.

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast',
—'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind',
— 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted',
- 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',

< 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblindl0']

You can activate a style with the following:

plt.style.use('fivethirtyeight')

Now let’s remake the above plot to see how it looks:

2.1. Introductory 71

Matplotlib, Release 3.3.0

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

0 20000 40000 60000 80000 100000120000 140000

Out:

<BarContainer object of 10 artists>

The style controls many things, such as color, linewidths, backgrounds, etc.

Customizing the plot

Now we’ve got a plot with the general look that we want, so let’s fine-tune it so that it’s ready
for print. First let’s rotate the labels on the x-axis so that they show up more clearly. We can
gain access to these labels with the azes.Azes.get_zticklabels() method:

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()

72 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

0 20000 40000 60000 80000 100000120000 140000

If we’d like to set the property of many items at once, it’s useful to use the pyplot.setp()
function. This will take a list (or many lists) of Matplotlib objects, and attempt to set some
style element of each one.

fig, ax = plt.subplots()

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

2.1. Introductory 73

Matplotlib, Release 3.3.0

~O

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
—None, Nonel

It looks like this cut off some of the labels on the bottom. We can tell Matplotlib to automati-
cally make room for elements in the figures that we create. To do this we set the autolayout
value of our rcParams. For more information on controlling the style, layout, and other fea-
tures of plots with rcParams, see Customizing Matplotlib with style sheets and rcParams.

plt.rcParams.update({'figure.autolayout': Truel})

fig, ax = plt.subplots()

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

74 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

will L I

White-Trantow _
Trantow-Barrows _

kulas Inc [

Koepp Ltd |

Keeling LLC [

Jerde-titpert |

Fritsch, Russel and Anderson _

Frami, Hills and Schmidt _

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,

—None, Nonel

Next, we add labels to the plot. To do this with the OO interface, we can use the 4Artist.set ()
method to set properties of this Axes object.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()

plt

.setp(labels, rotation=45, horizontalalignment='right')

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',

title='Company Revenue')

2.1.

Introductory

75

Matplotlib, Release 3.3.0

Company Revenue

Will LLC
White-Trantow
Trantow-Barrows

3&"- Kulas Inc
g Koepp Ltd
- Keeling LLC
8 Jerde-Hilpert

Fritsch, Russel and Anderson
Frami, Hills and Schmidt
Barton LLC

e
%D

%
Vs
%L

Total Revenue

Out:

[(-10000.0, 140000.0), Text(0.5, O, 'Total Revenue'), Text(0, 0.5, 'Company'), Text(0.5, 1.0,
< 'Company Revenue')]

We can also adjust the size of this plot using the pyplot.subplots() function. We can do this
with the figsize kwarg.

Note: While indexing in NumPy follows the form (row, column), the figsize kwarg follows
the form (width, height). This follows conventions in visualization, which unfortunately are
different from those of linear algebra.

fig, ax = plt.subplots(figsize=(8, 4))

ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

76 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Company Revenue

Will LLC
White-Trantow
Trantow-Barrows

I
I
-]
c Kulas Inc I
8 Koepp Ltd [—
c Keeling LLC .
o Jerde-Hilpert I
U Fritsch, Russel and Anderson IS
Frami, Hills and Schmidt I
Barton LLC .
Q QO O O Q QO
& &£ & S 4_}00
I £5) A ,\S) .\”}

Total Revenue

Out:

[(-10000.0, 140000.0), Text(0.5, 0, 'Total Revenue'), Text(0, 0.5, 'Company'), Text(0.5, 1.0,
< 'Company Revenue')]

For labels, we can specify custom formatting guidelines in the form of functions. Below we
define a function that takes an integer as input, and returns a string as an output. When used
with 4zis.set_major_formatter Or Azis.set_minor_formatter, they will automatically create and
use a ticker.FuncFormatter class.

For this function, the x argument is the original tick label and pos is the tick position. We will
only use x here but both arguments are needed.

def currency(x, pos):
"""The two args are the walue and tick position"""
if x >= 1le6:
s = '"${:1.1fM" . format (x*1le-6)
else:
s = '${:1.0f/K"' .format (x*1e-3)
return s

We can then apply this function to the labels on our plot. To do this, we use the xaxis attribute
of our axes. This lets you perform actions on a specific axis on our plot.

fig, ax = plt.subplots(figsize=(6, 8))
ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')
ax.xaxis.set_major_formatter (currency)

2.1. Introductory 77

Matplotlib, Release 3.3.0

Company Revenue

Will LLC

White-Trantow

Trantow-Barrows

Kulas Inc
=
% Koepp Ltd
o
£ .
o Keeling LLC
O
Jerde-Hilpert

Fritsch, Russel and Anderson

Frami, Hills and Schmidt

Barton LLC

iy
%
2%
%
%

o

Total Revenue

Combining multiple visualizations

It is possible to draw multiple plot elements on the same instance of azes.Azes. To do this we
simply need to call another one of the plot methods on that axes object.

78 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

fig, ax = plt.subplots(figsize=(8, 8))
ax.barh(group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

Add a vertical line, here we set the style in the function call
ax.axvline(group_mean, ls='--', color='r')

Annotate new companies
for group in [3, 5, 8]:
ax.text (145000, group, "New Company", fontsize=10,
verticalalignment="center")

Now we move our title up since it's getting a little cramped
ax.title.set(y=1.05)

ax.set(x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

ax.xaxis.set_major_formatter(currency)

ax.set_xticks([0, 25e3, 50e3, 75e3, 100e3, 125e3])

fig.subplots_adjust(right=.1)

plt.show()

2.1. Introductory

79

Matplotlib, Release 3.3.0

Company Revenue
I

Will LLC l

White-Trantow

New Company

Trantow-Barrows

Kulas Inc

2N
% Koepp Ltd New Company
o
= .
o Keeling LLC
o

Jerde-Hilpert New Company

Fritsch, Russel and Anderson

Frami, Hills and Schmidt

Barton LLC

%
I
%

&

R

Total Revenue

Saving our plot

Now that we’re happy with the outcome of our plot, we want to save it to disk. There are
many file formats we can save to in Matplotlib. To see a list of available options, use:

print(fig.canvas.get_supported_filetypes())

Out:

{'eps': 'Encapsulated Postscript', 'jpg': 'Joint Photographic Experts Group', 'jpeg': 'Joint
—Photographic Experts Group', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png
—': 'Portable Network Graphics', 'ps': 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA,
—bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif': 'Tagged,

—Image File Format', 'tiff': 'Tagged Image File Format'} (continues on next page)

80 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

|

We can then use the figure.Figure.savefig() in order to save the figure to disk. Note that
there are several useful flags we show below:

* transparent=True makes the background of the saved figure transparent if the format
supports it.

* dpi=80 controls the resolution (dots per square inch) of the output.

* bbox_inches="tight" fits the bounds of the figure to our plot.

Uncomment this line to save the figure.
fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

Total running time of the script: (0 minutes 2.892 seconds)

2.1.6 Customizing Matplotlib with style sheets and rcParams

Tips for customizing the properties and default styles of Matplotlib.

Using style sheets

The style package adds support for easy-to-switch plotting ”“styles” with the same parameters
as a matplotlib rc file (which is read at startup to configure Matplotlib).

There are a number of pre-defined styles provided by Matplotlib. For example, there’s a
pre-defined style called "ggplot”, which emulates the aesthetics of ggplot (a popular plotting
package for R). To use this style, just add:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib as mpl

from cycler import cycler
plt.style.use('ggplot')

data = np.random.randn(50)

To list all available styles, use:

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast',

— 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind',
— 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted',
- 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',

— 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblindl0']

Defining your own style

You can create custom styles and use them by calling style.use with the path or URL to the
style sheet.

2.1. Introductory 81

https://github.com/matplotlib/matplotlib/tree/master/lib/matplotlib/mpl-data/stylelib
https://ggplot2.tidyverse.org/
https://www.r-project.org/

Matplotlib, Release 3.3.0

For example, you might want to create ./images/presentation.mplstyle with the following:

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16

Then, when you want to adapt a plot designed for a paper to one that looks good in a presen-
tation, you can just add:

>>> import matplotlib.pyplot as plt
>>> plt.style.use('./images/presentation.mplstyle')

Alternatively, you can make your style known to Matplotlib by placing your <style-name>.
mplstyle file into mpl_configdir/stylelib. You can then load your custom style sheet with a
call to style.use(<style-name>). By default mpl_configdir should be ~/.config/matplotlib, but
you can check where yours is with matplotiib.get_configdir(); you may need to create this
directory. You also can change the directory where Matplotlib looks for the stylelib/ folder by
setting the MPLCONFIGDIR environment variable, see matplotlib configuration and cache direc-
tory locations.

Note that a custom style sheet in mpl_configdir/stylelib will override a style sheet defined
by Matplotlib if the styles have the same name.

Once your <style-name>.mplstyle file is in the appropriate mpl_configdir you can specify your
style with:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(<style-name>)

Composing styles

Style sheets are designed to be composed together. So you can have a style sheet that cus-
tomizes colors and a separate style sheet that alters element sizes for presentations. These
styles can easily be combined by passing a list of styles:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(['dark_background', 'presentation'])

Note that styles further to the right will overwrite values that are already defined by styles
on the left.

Temporary styling

If you only want to use a style for a specific block of code but don’t want to change the global
styling, the style package provides a context manager for limiting your changes to a specific
scope. To isolate your styling changes, you can write something like the following:

with plt.style.context('dark_background'):
plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')
plt.show()

82 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

0.00

—0.25

—0.50

—0.75

2.1.7 Matplotlib rcParams

Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively
from the python shell. All of the rc settings are stored in a dictionary-like variable called
matplotlib.rcParams, which is global to the matplotlib package. rcParams can be modified
directly, for example:

mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.linestyle'] = '-='
plt.plot(data)

2.1. Introductory 83

Matplotlib, Release 3.3.0

I I
1 A in g 1
| I HYINHH /!
1 n A T HAE .
1- L] I I I 1 11 I N] i 1
' A I r‘,'“'u bonog)
1 I\ 1 T
1 [llll": lI'il |“ |l ‘1
I I s h I LT
1 A n, o |ll;|l \
v Il " TR
FYARVA N B B T
'[,‘f V1 u L \
1 1
1 \I " !
=1 - 1 v 1 ?II
1! !
I
(! I
1
o i
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7£08b490e940>]

Note, that in order to change the usual pilot color you have to change the prop cycle property
of axes:

mpl.rcParams['axes.prop_cycle'] = cycler(color=['r', 'g', 'b', 'y'])
plt.plot(data) # first color is red

84 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

]
! A R "
1 n L h
1 In H HHIHL
o | I I R B
1 I 11 / u I :' 1 n 1 \
: A R T R
[
. ARYEN VA BRI
o- A AT Ny u g
\
Vorry) \ n"l " ity
BV b : *Intoo
I I " I \
1 1Y I
! \/ v !
-1 1 v i I"II
H [
[
! [
fl
. ."
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7£08b58d9bb0>]

Matplotlib also provides a couple of convenience functions for modifying rc settings.

matplotlib.rc can be used to modify multiple settings in a single group at once, using keyword
arguments:

mpl.rc('lines', linewidth=4, linestyle='-."')
plt.plot(data)

2.1. Introductory 85

Matplotlib, Release 3.3.0

0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7£f08b5961730>]

matplotlib.rcdefaults Will restore the standard Matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.
rcsetup for details.

The matplotlibrec file

Matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which
we call ‘'rc settings’ or 'rc parameters’. You can control the defaults of almost every property
in Matplotlib: figure size and DPI, line width, color and style, axes, axis and grid properties,
text and font properties and so on. When a URL or path is not specified with a call to style.
use('<path>/<style-name>.mplstyle'), Matplotlib looks for matplotlibrc in four locations, in the
following order:

1. matplotlibrc in the current working directory, usually used for specific customizations
that you do not want to apply elsewhere.

2. $MATPLOTLIBRC if it is a file, else $MATPLOTLIBRC/matplotlibrc.

3. It next looks in a user-specific place, depending on your platform:

86 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

* On Linux and FreeBSD, it looks in .config/matplotlib/matplotlibrc (Or
$XDG_CONFIG_HOME/matplotlib/matplotlibrc) if you've customized your environment.

* On other platforms, it looks in .matplotlib/matplotlibrc.
See matplotlib configuration and cache directory locations.

4. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is something like /usr/lib/
python3.7/site-packages on Linux, and maybe C:\Python37\Lib\site-packages on Win-
dows. Every time you install matplotlib, this file will be overwritten, so if you want
your customizations to be saved, please move this file to your user-specific matplotlib
directory.

Once a matplotlibrc file has been found, it will not search any of the other paths.

To display where the currently active matplotlibrc file was loaded from, one can do the fol-
lowing:

>>> import matplotlib
>>> matplotlib.matplotlib_fname ()
'/home/foo/.config/matplotlib/matplotlibrc’

See below for a sample matplotlibre file.

A sample matplotlibrc file

MATPLOTLIBRC FORMAT

NOTE FOR END USERS: DO NOT EDIT THIS FILE!

##

This t1s a sample matplotlib configuration file — you can find a copy
of it on your system in site-packages/matplotlib/mpl-data/matplotlibre
(which related to your Python installation location).

##

You should find a copy of it on your system at

site-packages/matplotlib/mpl-data/matplotlibre (relative to your Python
installation location). DO NOT EDIT IT!

##

If you wish to change your default style, copy this file to one of the
following locations

#i#t uniz/linue:

$HOME/ . config/matplotlib/matplotlibre OR

$XDG_CONFIG_HOME/matplotlib/matplotlibre (if $XDG_CONFIG_HOME is set)
other platforms:

$HOME/ . matplotlib/matplotlibre

and edit that copy.

##

See https://matplotlib.org/users/customizing.html#the-matplotlibre-file

for more details on the paths which are checked for the configuration file.
##

Blank lines, or lines starting with a comment symbol, are tignored, as are
trailing comments. Other lines must have the format:

key: wal # optional comment

##

Formatting: Use PEP8-like style (as enforced in the rest of the codebase).
All lines start with an additional '#', so that removing all leading '#'s
yields a wvalid style file.

(continues on next page)

2.1. Introductory 87

Matplotlib, Release 3.3.0

(continued from previous page)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Colors: for the color values below, you can either use
- a matplotlib color string, such as T, k, or b
- an rgb tuple, such as (1.0, 0.5, 0.0)
- a hez string, such as ffOOff
- a scalar grayscale intensity such as 0.75
- a legal html color name, e.g., Ted, blue, darkslategray

Matplotlib configuration are currently divided into following parts:
- BACKENDS
- LINES
- PATCHES
- HATCHES
- BOXPLOT
- FONT
- TEXT
- LaTeX
- AXES
- DATES
- TICKS
- GRIDS
- LEGEND
- FIGURE
- IMAGES
- CONTOUR PLOTS
- ERRORBAR PLOTS
- HISTOGRAM PLOTS
- SCATTER PLOTS
- AGG RENDERING
- PATHS
- SAVING FIGURES
- INTERACTIVE KEYMAPS
- ANIMATION

CONFIGURATION BEGINS HERE

##
##
##
##
##
##
##
##
##
##
##
##

FAAAAAAFAAAAA A AAA AN AAAFAAAFAAAFAAKFAAAA A AAAHAAAFAAAFAAAFAASFAAF AN KK
* BACKENDS *
Fe A A A A A A A A A A A HF A A A H A A A H A HeF A FA A A F A A A A HA A S F A S F A S F A S Fe K
The default backend. If you omit this parameter, the first working
backend from the following list is used:

MacOSX (t5Agg Gtk3Agg TkAgg WxAgg Agg
Other choices include:

Qt5Cairo GTK3Cairo TkCairo WxCairo Cairo

Qt4Agg Qt4Cairo Wxr # deprecated.

PS PDF SVG Template
You can also deploy your own backend outside of matplotlid by referring to
the module name (which must be in the PYTHONPATH) as 'module://my_backend'.

#backend: Agg

##

The port to use for the web server in the WebAgg backend.

#webagg.port: 8988

##

The address on which the WebAgg web server should be reachable

#webagg.address: 127.0.0.1

(continues on next page)

88

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

If webagg.port is unavailable, a number of other random ports will
be tried until one that %is avatlable 7s found.
#webagg.port_retries: 50

When True, open the webbrowser to the plot that is shown
#webagg.open_in_browser: True

If you are running pyplot inside a GUI and your backend choice

conflicts, we will automatically try to find a compatible one for
you if backend_fallback is True

#backend_fallback: True

#interactive: False
#toolbar: toolbar2 # {None, toolbar2, toolmanagert
#timezone: e # a pytz timezome string, e.g., US/Central or Europe/Paris

T K FAKAAKAA KA AR AR AR AR A AR AR AR AR AR A AA AR AR AR AR ARAAHKAK KA AR KA K
* LINES *
BB FFFKRA KA IARKIAIAKAA KA A TAAIARIARIARFA KA TAK AR IAR A AR I A KA FAR AR AR
See https://matplotlib.org/api/artist_api.html#module-matplotlid. lines

for more information on line properties.

#lines. linewidth: 1.5 # line width in points

#lines. linestyle: - # solid line

#lines.color: co # has no affect on plot(); see azes.prop_cycle
#lines.marker: None # the default marker
#lines.markerfacecolor: auto # the default marker face color
#lines.markeredgecolor: auto # the default marker edge color
#lines.markeredgewidth: 1.0 # the line width around the marker symbol
#lines.markersize: 6 # marker size, in points
#lines.dash_joinstyle: round # {miter, round, bevel}
#lines.dash_capstyle: butt # {butt, round, projectingt
#lines.soltd_joinstyle: round # {miter, round, bevell}
#lines.solid_capstyle: projecting # {butt, round, projectingl
#lines.antzaliased: True # render lines in antialiased (no jaggies)

The three standard dash patterns. These are scaled by the linewidth.
#lines.dashed_pattern: 3.7, 1.6

#lines.dashdot_pattern: 6.4, 1.6, 1, 1.6

#lines.dotted_pattern: 1, 1.65

#lines.scale_dashes: True

#markers. fillstyle: full # {full, left, right, bottom, top, nonel}
#pcolor.shading : flat

FHHE A A H A A A A H A HeF A e F A e F A e FC A A A H A e A e FAE A e F A e FA e e F A He A A A A H A A A e
* PATCHES *
BH AKFAAAAAAAAAAKFAAKFAAFAAKFAA AN FAAFAAAFAAAFAAAFAAKFA A FAA A A FAAF KA F KN
Patches are graphical objects that fill 2D space, like polygons or circles.
See hittps://matplotlib.org/api/artist_api.html#module-matplotlib.patches

for more information on patch properties.

#patch. linewidth: 1 # edge width in points.
#patch. facecolor: co
#patch.edgecolor: black # if forced, or patch ts mnot filled

(continues on next page)

2.1. Introductory 89

Matplotlib, Release 3.3.0

(continued from previous page)

#patch. force_edgecolor: False # True to always use edgecolor
#patch.antialiased: True # render patches in antialiased (no jaggies)

KA AAA A AR A A KKK KK H KKK A KA A A A A KA A A KK KKK H A KK KA KA A A KA A KK KK KKK

* HATCHES *
BEEE A KA A A A KA A A A A K H KK F KA KA A KA A A A A A KA KA KA KA K KA KA A KA A A KA A A KKK KKK
#hatch.color: black

#hatch. linewidth: 1.0

FEHE ook o o o e e e oo o o e e e e o o o o e e e o e o o e e e e o o o e e e e o o o o o e e e o o o o e e e e o o o e e e o o o o e e e e o ok ok oK K

* BOXPLOT *
B AARFAAAAAAAAAAAAA KA AAAFAAFAAFAAAAFAAFAA A AAHFAAHFAAAAA A FAA A A A FAAH AN Fe K e
#boxplot.notch: False

#bozplot.vertical: True

#boxplot.whiskers: 1.5

#boxplot.bootstrap: None
#boxzplot.patchartist: False

#boxplot.showmeans: False
#boxplot.showcaps: True
#bozplot.showbox: True
#bozplot.showfliers: True
#boxplot.meanline: False

#bozplot. flierprops.color: black
#boxplot. flierprops.marker: 4

#bozplot. flierprops.markerfacecolor: none
#bozplot. flierprops.markeredgecolor: black
#bozplot. flierprops.markeredgewidth: 1.0

#bozxplot. flierprops.markersize: 6
#boxplot. flierprops. linestyle: none
#boxplot. flierprops. linewidth: 1.0
#boxplot.boxzprops.color: black

#boxzplot.boxprops. linewidth: 1.0
#boxplot.boxprops. linestyle: -

#bozxplot.whiskerprops.color: black
#boxplot.whiskerprops. linewidth: 1.0
#boxplot.whiskerprops. linestyle: -

#boxplot.capprops.color: black
#boxplot. capprops. linewidth: 1.0
#boxplot.capprops. linestyle: -

#boxplot.medianprops.color: C1
#boxzplot.medianprops. linewidth: 1.0
#boxzplot.medianprops. linestyle: -

#boxplot.meanprops.color: c2
#boxzplot.meanprops.marker:
#boxplot.meanprops.markerfacecolor: C2
#boxplot.meanprops.markeredgecolor: C2
#boxplot.meanprops.markersize: 6
#boxplot.meanprops. linestyle: -

(continues on next page)

90

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

#boxzplot.meanprops. linewidth: 1.0

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

A A A HeF A A H A e F A e F A HeFE A e H A e F A e FAe e e F A e F A e H A H A A A F A e A FA A F A e H K
* FONT *
A e e H A e H A HC A A A KA e H A e HE A e H A HeHE A A A KA e H A H A e H A HeH A A A KA A KA e
The font properties used by “text.Text’.

See https://matplotlib.org/api/font_manager_api.html for more information
on font properties. The 6 font properties used for font matching are

given below with their default values.

The font.family property has five wvalues:
- 'serif' (e.g., Times),
- 'sans-serif' (e.g., Helvetica),
- 'cursive' (e.g., Zapf-Chancery),
- 'fantasy' (e.g., Western), and
- 'monospace’ (e.g., Courier).
Each of these font families has a default list of font nmames in decreasing
order of priority associated with them. When text.usetex is False,
font. family may also be one or more concrete font names.

The font.style property has three wvalues: mormal (or roman), italic
or oblique. The oblique style will be used for italic, if it @5 not
present.

The font.wariant property has two wvalues: mormal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of 'smaller', or about 83%) of the current font
size.

The font.weight property has effectively 13 walues: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.

The font.stretch property has 11 walues: ultra—-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-exzpanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property ts not currently implemented.

The font.size property ts the default font size for text, given in pts.
10 pt is the standard value.

Note that font.size controls default text sizes. To configure
special text sizes tick labels, azes, labels, title, etc, see the rc
settings for axes and ticks. Special texrt sizes can be defined
relative to font.size, using the following wvalues: zz-small, z-small,
small, medium, large, z-large, zz—large, larger, or smaller

#font. family: sans—-serif
#font.style: normal
#font.variant: normal
#font.wetight: mnormal
#font.stretch: normal
#font.size: 10.0

(continues on next page)

2.1.

Introductory 91

Matplotlib, Release 3.3.0

(continued from previous page)

#font.serif: DejaVu Serif, Bitstream Vera Serif, Computer Modern Roman, New Century,
—Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times Neuw,
—Roman, Times, Palatino, Charter, serif

#font.sans-serif: DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans Serif, Luctida Grande,y
—Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif

#font. cursive: Apple Chancery, Textile, Zapf Chancery, Sand, Script MT, Felipa, cursive
#font. fantasy: Comic Neue, Comic Sans MS, Chicago, Charcoal, ImpactWestern, Humor Sans, zkcd,
— fantasy

#font.monospace: DejalVu Sans Mono, Bitstream Vera Sans Mono, Computer Modern Typewriter, Andale
—Mono, Nimbus Mono L, Courier New, Courier, Fized, Terminal, momnospace

FHHE A A A A A A A FA A A F A FAE A e F A e F A e FE A H A e A e FAE A e F A e F A e F A A A e F A e HFe e e e e
* TEXT *
FHHE A A A H A A A A A H A H A e FE A e HE A e HE A HE A A A A e H A HeH A e H A e H A H A A A A KA A e
The text properties used by “text.Text .

See https://matplotlib.org/api/artist_api.html#module-matplotlid. text

for more information on text properties

#text.color: black

FHHE A A AA A A A F A A A FA A e F A e H A e F A H A A A e FAE A e F A S FA e F A HF A F A H A A Fe e e
* LaTeX *
FHHE A A A A A A A A H A HeF A e FE A HeH A e HE A A A H A e A e H A e F A e H A e H A H A A A A KA e A e
For more information on LaTex properties, see
https://matplotlib.org/tutorials/text/usetex. html
#text.usetex: False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helwetica,
avant garde, courier, monospace, computer modern Toman,
computer modern sans sertif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list
#text.latex.preamble: # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
text.latex.preamble is a single line of LaTeX code that
will be passed on to the LaTeX system. It may contain
any code that ts wvalid for the LaTeX "preamble", <.e.
between the "\documentclass” and "\begin{document}"
statements.

H oW R OR R R R

Note that it has to be put on a single line, which may
become quite long.

The following packages are always loaded with usetex, so
beware of package collistons: color, geometry, graphicz,
typelcm, textcomp.

Adobe Postscript (PSSNFS) font packages may also be
loaded, depending on your font settings.

oW OR R OR R W OW W OW R RRR

FreeType hinting flag ("foo" corresponds to FT_LOAD_FOO); may be one of the

following (Proprietary Matplotlib-specific synonyms are given in parentheses,

but their use s discouraged):

- default: Use the font's native hinter if possible, else FreeType's auto-hinter.
("either" is a synonym).

(continues on next page)

92 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

- no_autohint: Use the font's native hinter if possible, else don't hint.
("native" %is a synonym.)

— force_autohint: Use FreeType's auto-hinter. ("auto"” is a synonym.)

— mo_hinting: Disable hinting. ("none" is a synonym.)

#text.hinting: force_autohint

#text.hinting_factor: 8 # Specifies the amount of softness for hinting in the
horizontal direction. A wvalue of 1 will hint to full
pizels. A wvalue of 2 will hint to half pizels etc.
#text.kerning_factor : O # Specifies the scaling factor for kerning values. This
is provided solely to allow old test images to remain
unchanged. Set to 6 to obtain previous behavior. Values
other than O or 6 have no defined meaning.
#text.antialiased: True # If True (default), the text will be antialiased.
This only affects the Agg backend.

The following settings allow you to select the fonts in math mode.
#mathtext. fontset: dejavusans # Should be 'dejavusans' (default),
'dejavuserif', 'cm' (Computer Modern), 'stiz',
'stizsans' or 'custom' (unsupported, may go
away in the future)
"mathtext. fontset: custom" is defined by the mathtext.bf, .cal, .it,
settings which map a TeX font name to a fontconfig font pattern. (These
settings are not used for other font sets.)
#mathtext.bf: sans:bold
#mathtext.cal: cursive
#mathtext.it: sans:italic
#mathtext.rm: sans
#mathtext.sf: sans
#mathtext.tt: monospace
#mathtext. fallback: cm # Select fallback font from ['cm' (Computer Modern), 'stiz'
'stizsans'] when a symbol can not be found in one of the
custom math fonts. Select 'None' to mot perform fallback
and replace the missing character by a dummy symbol.
#mathtext.default: it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

FEHE ook e e o KK o o e e e e e e e KK e e e e e e e e e K A A e e e e e e KK A A A A e e e e KKK A A e A o A KKK KK KKK K
* AXES *
T AHARFAAAAAAAAA A A A A A A FA A HeF A e F A F A H A A FA A A F A S FAE A A F A A A A A A F A HFe e A e e
Following are default face and edge colors, default tick stizes,

default fontsizes for ticklabels, and so on. See

https://matplotlidb.org/api/azes_api.html#module-matplotlidb.azes

#axes. facecolor: white # azes background color

#azes.edgecolor: black # azes edge color

#azes. linewidth: 0.8 # edge linewidth

#azes.grid: False # display grid or not

#azres.grid.axis: both # which aztis the grid should apply to
#azes.grid.which: major # gridlines at {major, minor, both} ticks
#azes.titlelocation: center # alignment of the title: {left, right, center}
#azes.titlesize: large # fontsize of the azes title

#azes.titleweight: normal # font weight of title

#azxes.titlecolor: auto # color of the azes title, auto falls back to

(continues on next page)

2.1. Introductory 93

Matplotlib, Release 3.3.0

(continued from previous page)

text.color as default value

#azes.titley: None # position title (azes relative units). Nome implies auto
#azes.titlepad: 6.0 # pad between axzes and title in points

#azes. labelsize: medium # fontsize of the x any y labels

#azes. labelpad: 4.0 # space between label and azis

#azxes. labelweight: normal # weight of the = and y labels

#azes. labelcolor: black

#azes.azxisbelow: line draw azis gridlines and ticks:

#
- below patches (True)
- above patches but below lines ('line’)
- above all (False)
#azes. formatter.limits: -5, 6 # use scientific notation <f logl0
of the azis range is smaller than the
first or larger than the second
#azes. formatter.use_locale: False # When True, format tick labels
according to the user's locale.
For example, use ',' as a decimal
separator in the fr_FR locale.
#azes. formatter.use_mathtext: False # When True, use mathtext for scientific
notation.
#azes. formatter.min_exponent: 0 # minimum exponent to format in scientific notation
#azes. formatter.useoffset: True # If True, the tick label formatter
will default to labeling ticks relative
to an offset when the data range is
small compared to the minimum absolute
value of the data.
#azes. formatter.offset_threshold: 4 # When useoffset is True, the offset
will be used when it can remove
at least this number of significant
digits from tick labels.

#azres.spines.left: True # display azis spines
#azes.spines.bottom: True
#axes.spines.top: True

#azes.spines.right: True

#axes.unticode_minus: True # use Unticode for the minus symbol rather than hyphen. See
https://en.wikipedia.org/wiki/Plus_and_minus_signs#Character_codes

#azes.prop_cycle: cycler('color', ['1f7704', 'ff7f0e', '2calO2c’, 'd62728', '9467bd', '8c564b’,
— 'e377c2', "IfIf7f', 'bebd22', '17becf'])

color cycle for plot lines as list of string colorspecs:

single letter, long name, or web-style hezx

As opposed to all other paramters in this file, the color

values must be enclosed in quotes for this parameter,

e.g. '"1f7704', instead of 1f77b4.

See also https://matplotlib.org/tutorials/intermediate/color_cycle.html

for more detatls on prop_cycle usage.
#azes.autolimit_mode: data # How to scale azes limits to the data. By using:

- "data" to use data limits, plus some margin
- "round_numbers" move to the nearest "round" number
#azes.zmargin: .06 # x margin. See ‘azes.Azes.margins’
#axes.ymargin: .05 # y margin. See “axes.Azes.margins’
#polarazes.grid: True # display grid on polar azes
#azes3d.grid: True # display grid on 3d azes

(continues on next page)

94 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

B AARFAAAAAAAAA KA AA KA AAAFAA KA A A A A AA A A A A AAHFAAHFAA A FA A A A A A A AT A HA A Fe K e
* AXIS *
FHHE AR AAA A A A A A A F A A F A e FAE A e F A e F A e FE A H A e A e FAE A e A e FA e e F A A A A A H A e e e
#razis. labellocation: center # alignment of the zazis label: {left, right, center}
#yazis. labellocation: center # alignment of the yazis label: {bottom, top, center}

##
##
##
##
##

A e e H A e H A A A A A KA e H A e H A e H A HeHE A HeHE A KA HeH A H A H A F A A A KA A KA e
* DATES *
FAAAAAAFAAAAAAAFAAHAAAAAAAFAA AT A A A AN FAA A AAAFAA A A AA A A A A FAA A A A AF AN S H K
These control the default format strings used in AutoDateFormatter.
Any valid format datetime format string can be used (see the python

“datetime’ for details). For ezample, by using:

- '"J%z'" will use the locale date representation

'"A%X" will use the locale time representation

- '"A%c’ will use the full locale datetime representation
These wvalues map to the scales:

{'year': 365, 'month': 30, 'day': 1, 'hour': 1/24, 'minute': 1 / (24 * 60)}
#date.autoformatter.year: Y

#date.autoformatter.month: AGAL

#date.autoformatter.day: AY=Jim=7d

#date.autoformatter. hour: am=4d JH
#date.autoformatter.minute: Ad JH: (M
#date.autoformatter.second: WH:JM: %S
#date.autoformatter.microsecond: JM:%S.%f

The reference date for Matplotlib's internal date representation
See https://matplotlib.org/exzamples/ticks_and_spines/date_precision_and_epochs.py
#date.epoch: 1970-01-01T00:00:00

FEHE KKK oK o K 3K 3K 3K K K K 3K 3K oK K 3K K 3K 3K K 3 K 3K 3K K 3 o K 3K K 3 S 3K oK K 3K K 3K 3K K 3K K 3K K K 3K K 3K 3K 3K oK K 3 K 3K oK K 3 K 3K oK K K K K K K K K K K K K
* TICKS *
FEHE KoK K K o o oK o K oK K K K K o K o K K o K K o K o K o K K e K K o K K K K K K K K oK K K oK K K oK K K oK K oK K ok Kk ok kK

See https://matplotlib.org/api/axis_api.html#matplotlib.azis. Tick
#ztick.top: False # draw ticks on the top side
#ztick.bottom: True # draw ticks on the bottom side
#xtick. labeltop: False # draw label on the top
#zxtick. labelbottom: True # draw label on the bottom
#xtick.major.size: 3.5 # major tick size in points
#xtick.minor.size: 2 # minor tick size in points
#xtick.major.width: 0.8 # major tick width in points
#xtick.minor.width: 0.6 # minor tick width in points
#zxtick.major.pad: 3.5 # distance to major tick label in points
#xtick.minor.pad: 3.4 # distance to the minor tick label in points
#xtick.color: black # color of the tick labels
#xtick. labelsize: medium # fontsize of the tick labels
#xtick.direction: out # direction: {in, out, inout}
#rtick.minor.visible: False # wvistbility of minor ticks on z-axis
#xtick.major.top: True # draw = axis top major ticks
#zxtick.major.bottom: True # draw T azis bottom major ticks
#xtick.minor.top: True # draw = axts top minor ticks
#zxtick.minor.bottom: True # draw = azis bottom minor ticks
#zxtick.alignment: center # alignment of zticks

(continues on next page)
2.1. Introductory 95

Matplotlib, Release 3.3.0

(continued from previous page)

#ytick. left:
#ytick.right:
#ytick. labelleft:
#ytick. labelright:
#ytick.major.size:
#ytick.minor.size:
#ytick.major.width:
#ytick.minor.width:
#ytick.major.pad:
#ytick.minor.pad:
#ytick.color:
#ytick. labelsize:
#ytick.direction:
#ytick.minor.visible:
#ytick.major.left:
#ytick.major.right:
#ytick.minor.left:
#ytick.minor.right:
#ytick.alignment:

True
False
True
False
3.5
2

0.8
0.6
3.5
3.4
black
medium
out
False
True
True
True
True

draw ticks on the left side

draw ticks on the right side

draw tick labels on the left side
draw tick labels on the right side
major tick size in points

minor tick size in points

major tick width in points

minor tick width in points

distance to major tick label in points
distance to the minor tick label in points
color of the tick labels

fontsize of the tick labels

direction: {in, out, inout}

visibility of minor ticks on y-axis
draw y azis left major ticks

draw y azis right major ticks

draw y azis left minor ticks

draw y axts right minor ticks

O R WK W RO WKW OWH R WK WR

center_baseline # alignment of yticks

FEHE o oo o o e e e e o o o o e e e e o o e e e e e e o e e e e e e o e e e e e e o e o e e e e o o e e e e e o e o e e e e o o o ok e e o o ok ok K K
* GRIDS
FEHE ook o o e e e o o o o o e e e o o o o e e e S o o o e e e e o o o o e e e e o o o e e e S o o o o e e e e o o o e e e o o o o e e e e o ok ok ok K

#grid.color:

#g9rid.linestyle: -
#grid. linewidth: 0.8
#grid.alpha: 1.0

*

b0bObO # grid color

solid
in points
transparency, between 0.0 and 1.0

BEEE A A A A A A A KA K F KK K F A KK H A KK AH A A A A A A KA KK KK K F A KK H A KA KA A A KA A KK KK KKK
* LEGEND
B KA KA AR A A A KK A KA K KA KA KK KA KA A KA A A KKK KA K KA KA KKK KA KKK A KA A AN A AN KKK

#legend.
#legend.
#legend.
#legend.
#legend.
#legend.

#legend.
#legend.
#legend.
#legend.
#legend.
#legend.

loc:
frameon:
framealpha:
facecolor:
edgecolor:
fancybozx:

shadow:
numpoints:
scatterpoints:
markerscale:
fontsize:

best
True
0.8

inherit

0.8
True

False
1

1

1.0

medium
title_fontsize: None

*

1f True, draw the legend on a background patch
legend patch transparency

inherit from azes.facecolor; or color spec
background patch boundary color

1f True, use a rounded box for the

legend background, else a rectangle

1f True, give background a shadow effect

the number of marker points in the legend line
number of scatter points

the relative size of legend markers vs. original

BHOWH RO R R R W W

None sets to the same as the default azes.

Dimensions as fraction of fontsize:

#legend.
#legend.
#legend.
#legend.
#legend.
#legend.
#legend.

borderpad:
labelspacing:
handlelength:
handleheight:
handletextpad:
borderazespad:
columnspacing:

0.4
0.5
2.0
0.7
0.8
0.5
2.0

H oW R R R R R

border whitespace

the vertical space between the legend entries

the length of the legend lines

the height of the legend handle

the space between the legend line and legend text
the border between the axes and legend edge
column separation

(continues on next page)

96

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

B KA AAAAAAAA KA A KA KKK K
* FIGURE
B KA A A A KA A A KKK KA KKK KK

See https://matplotlib.o

#figure.titlesize: large
#figure.titlewetght: normal
#figure. figsize: 6.4, 4
#figure.dpi: 100

#figure. facecolor: white
#figure.edgecolor: white
#figure. frameon: True

#figure.maz_open_warning: 2

#figure.ratse_window : True

The figure subplot param
#figure.subplot.left: 0.1
#figure.subplot.right: 0.9
#figure.subplot.bottom: 0.1
#figure.subplot.top: 0.8
#figure.subplot.wspace: 0.2

#figure.subplot.hspace: 0.2

Figure layout
#figure.autolayout: False

#figure.constrained_layout.

#figure.constrained_layout.
#figure.constrained_layout.
#figure.constrained_layout.
#figure.constrained_layout.

B A A A A A A A A A A A KA KA KA KK
* IMAGES

B Fododd A FAAA A A A K F A A A A K K
#image.aspect: equal
#image. interpolation: ante
#image. cmap : virtdis
#image. lut: 256
#image.origin: upper
#image.resample: True
#image.composite_image: Tru

FHHE ook ok ok e e o ook ok oK e e e o o ok ok K K ok ok

FAAAAAAFAA AT AAAFAA SR AAAFAAAFAAHAAAFAA A A A HF AN S He K
*
A A A A A KA A FA A HAE A e F A FA A F A H A A A FA e e F A e Fe K
rg/api/figure_api.html#matplotlid. figure. Figure
size of the figure title (" Figure.suptitle() ")
weight of the figure title
.8 # figure size in inches
figure dots per inch
figure facecolor
figure edgecolor
enable figure frame
0 # The mazimum number of figures to open through
the pyplot interface before emitting a warning.
If less than one this feature ts disabled.
Raise the GUI window to front when show() %s called.

eters. All dimensions are a fraction of the figure width and height.
25 # the left side of the subplots of the figure

the right side of the subplots of the figure
the bottom of the subplots of the figure
the top of the subplots of the figure
the amount of width reserved for space between subplots,
expressed as a fraction of the average axis width
the amount of hetght reserved for space between subplots,
expressed as a fraction of the average azis height

1
8

#
#
#
#
#
#

When True, automatically adjust subplot
parameters to make the plot fit the figure
using “tight_layout”
use: False # When True, automatically make plot
elements fit on the figure. (Not
compatible with “autolayout ™, above).
h_pad: 0.04167 # Padding around azes objects. Float representing
w_pad: 0.04167 # inches. Default is 3./72. inches (3 pts)
hspace: 0.02 # Space between subplot groups. Float representing
wspace: 0.02 # a fraction of the subplot widths being separated.

HAAK AR AR A A A A A AR A KA KA A A AR AR A KA KA KA AAHAKAK
*
AR AAAAAA A A A A A A A KA A A KA KA KA KA A KA KA KA KA
{equal, auto} or a number
aliased # see help(imshow) for options
A colormap mame, gray etc...
the stize of the colormap lookup table
{lower, upper}

e # When True, all the images on a set of axes are
combined into a single composite image before
saving a figure as a vector graphics file,
such as a PDF.

K K K K K K o S K K K o K K K K K K o K K K K o K K K K K K o K K K K oK K K K K K K KK K K K K

(continues on next page)

2.1. Introductory

97

Matplotlib, Release 3.3.0

(continued from previous page)

* CONTOUR PLOTS *
B AARFAAAAAAAAA KA AA KA AAAFAA KA A A A A AA A A A A AAHFAAHFAA A FA A A A A A A AT A HA A Fe K e
#contour.negative_linestyle: dashed # string or on-off ink sequence
#contour.corner_mask: True # {True, False, legacyl}
#contour. linewidth: Nome # {float, None} Size of the contour

linewtdths. If set to Nome,

it falls back to “line.linewidth’.

FHE KA AAAAA A A A A A A A FA A AA A A A A A A FA A FA KA HA KA HA A A A AR AR A
* ERRORBAR PLOTS *
FHE KA AT AKAATAK A KA I AT I A AT I KA KA A KA A A A KA A KA KKK A KA KA KA A KKK A
#errorbar.capsize: 0 # length of end cap on error bars in pizels

FHE KA AAAAA A A A A A A A A A A A A A A A A A KA FA A HA KA HA A A KA A A AR AR A
* HISTOGRAM PLOTS *
THE KA AA AR AAIAK A KA AT A I KA KA KA A KA A IA A IA KA K AT K AT A KA KA A KKK A
#hist.bins: 10 # The default number of histogram bins or 'auto'.

T KAAAAAAAAAAAAAAAAAAAFAAAAFAAAAAAAAAHAAAAHAAAAHAAAANAAAAAAAAAAAAAAAFAHAA KKK
* SCATTER PLOTS *
FHE KA AAAAAA AR A A A A A A A A A A A AT A A A A HFA A HHA A A A A A A AAA A A A A A AAF K
#scatter.marker: o # The default marker type for scatter plots.
#scatter.edgecolors: face # The default edge colors for scatter plots.

B ARAAAAAAAAAAFAAKFAAAFAAFAA T AA A AA AT AAAFAAAFAAAFAAAFA A FAAFA A FAAH AN F N e
* AGG RENDERING *
FHHE AR FAA A A A A F A A A FA A e F A e F A A e F A H A A A FAE A A F A S FA A e F A HF A A A F A HFe e e Fe e e
Warning: experimental, 2008/10/10
#agg.path.chunksize: 0 # 0 to disable; wvalues in the range
10000 to 100000 can tmprove speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A wvalue of 20000 is probably a good
starting point.

oW oW OWH R R

T AHARFAAAAAAAAA A A A A A A FA A HeF A e F A F A H A A FA A A F A S FAE A A F A A A A A A F A HFe e A e e
* PATHS *
FEHE A A H A A A A H A e KA e F A e F A e FE A A A H A e A e FAE A e F A e F A e F A HeF A A A H A e KA e
#path.simplify: True # When True, simplify paths by removing "invisible"
points to reduce file size and increase rendering
speed
#path.simplify_threshold: 0.111111111111 # The threshold of similarity below
which vertices will be removed 1in
the simplification process.
#path.snap: True # When True, rectilinear azis-aligned paths will be snapped
to the nearest pizel when certain criteria are met.
When False, paths will never be snapped.
#path.sketch: None # May be Nome, or a 3-tuple of the form:
(scale, length, randomness).

(continues on next page)

98 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

- *scale* is the amplitude of the wiggle
perpendicular to the line (in pizels).

- *length* is the length of the wiggle along the
line (in pizels).

- *randomness* is the factor by which the length is
randomly scaled.

H RO H R R

#path.effects:

FHHE AR AAA A A A A A FA A F A FAE A e F A e F A e F A H A e F A e FAE A e F A e FA A e F A A A F A A HF e A Fe e e
* SAVING FIGURES *
FHHE H A A A A A A A A H A e H A e HE A e H A e HC A HE A H A A A A e H A e H A e F A e H A HF A A A KA KA e
The default savefig params can be different from the display params

e.g., you may want a higher resolution, or to make the figure

background white

#savefig.dpi: figure # figure dots per inch or 'figure'
#savefig. facecolor: auto # figure facecolor when saving
#savefig.edgecolor: auto # figure edgecolor when saving
#savefig. format: png {png, ps, pdf, svg}t

#
#savefig.bbox: standard # {tight, standard}
'tight' is tincompatible with pipe-based animation
backends (e.g. 'ffmpeg') but will work with those
based on temporary files (e.g. 'ffmpeg_file')
#savefig.pad_inches: 0.1 # Padding to be used when bbox is set to 'tight'
#savefig.directory: ~ # default directory in savefig dialog boz,
leave empty to always use current working directory
setting that controls whether figures are saved with a
transparent background by default
Orientation of saved figure

#savefig.transparent: False
#savefig.orientation: portrait

tk backend params
#tk.window_focus: False # Maintain shell focus for TkAgg

ps backend params

#ps.papersize: letter # {auto, letter, legal, ledger, A0O-A10, BO-B10}

#ps.useafm: False # use of afm fonts, results in small files

#ps.usedistiller: False # {ghostscript, zpdf, Nonel}

Ezperimental: may produce smaller files.

zpdf intended for production of publication quality files,
but requires ghostscript, zpdf and psleps

dpt

Output Type 3 (Type3) or Type 42 (TrueType)

#ps.distiller.res: 6000
#ps. fonttype: 3

PDF backend params

#pdf.compression: 6 # integer from O to 9
0 disables compression (good for debugging)
#pdf. fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)

#pdf.uselqcorefonts : False
#pdf.inheritcolor: False

SVG backend params
#svg.image_inline: True # Write raster image data directly into the SVG file

#svg. fonttype: path # How to handle SVG fonts:
path: Embed characters as paths —-- supported
by most SVG renderers
None: Assume fonts are installed on the

(continues on next page)

2.1. Introductory 99

Matplotlib, Release 3.3.0

(continued from previous page)

machine where the SVG will be viewed.
#svg.hashsalt: None # If not None, use this string as hash salt instead of uutd4

pgf parameter

See https://matplotlib.org/tutorials/text/pgf.html for more information.
#pgf.rcfonts: True

#pgf.preamble: # See text.latex.preamble for documentation
#pgf.texsystem: zelatex

docstring params
#docstring.hardcopy: False # set this when you want to generate hardcopy docstring

T KA AARAA A AR A A A A A A A A A A KA A H A F KA F A A FA KA HA A A A KA KA A KA A
* INTERACTIVE KEYMAPS *
FHE KA AAAAA A A A A A A A A A A A A A A A A A KA FA A HA KA HA A A KA A A AR AR A
Event keys to interact with figures/plots via keyboard.

See https://matplotlib.org/users/navigation_toolbar.html for more details on
interactive navigation. Customize these settings according to your needs.

Leave the field(s) empty if you don't need a key-map. (i.e., fullscreen : '')
#keymap. fullscreen: f, ctrli+f # toggling

#keymap.home: h, T, home # home or reset mnemonic

#keymap.back: left, c, backspace, MouseButton.BACK # forward / backward keys
#keymap . forward: right, v, MouseButton.FORWARD # for quick mavigation
#keymap.pan: p # pan mnemonic

zoom mnemontc

saving current figure

display help about active tools

close the current figure

close all figures

switching on/off major grids in current azes
switching on/off minor grids in current azes
toggle scaling of y-azes ('log'/'linear')
toggle scaling of z-azes ('log'/'linear')
Copy figure to clipboard

#keymap.zoom: o

#keymap.save: s, ctrl+s
#keymap.help: f1

#keymap.quit: ctrl+w, cmd+w, q
#keymap.quit_all:
#keymap.grid: g
#keymap . grid_minor: G
#keymap.yscale: 1
#keymap.xscale: k, L
#keymap.copy: ctrl+c, cmd+c

TR OR RO R R R W W

FEHE KA A A A A A A A A A A A A A A KK HHH e e e e A A A A A A A A A A A KA HHHeHe e e e e e e e e e e A A A A A A A A KA KK

* ANIMATION *
B KA A AA A A A A A KK KKK F A KK F A KK A A KA A A A A A K H KKK F A KK F A KA KA A KA A A KKK KKK

#animation.html: none # How to display the animation as HTML in
the IPython notebook:

- 'html5' uses HTMLS video tag
- 'gshtml' creates a Javascript animation
#animation.writer: ffmpeg # MovielWriter 'backend' to use
#animation.codec: h264 # Codec to use for writing movie
#animation.bitrate: -1 # Controls size/quality tradeoff for movie.
-1 wmplies let utility auto-determine
#animation. frame_format: png # Controls frame format used by temp files
#animation. ffmpeg_path: ffmpeg # Path to ffmpeg binary. Without full path
$PATH is searched
#animation. ffmpeg_args: # Additional arguments to pass to ffmpeg
#animation.convert_path: convert # Path to ImageMagick's convert binary.
On Windows use the full path since convert
is also the mame of a system tool.
#animation.convert_args: # Additional arguments to pass to convert

(continues on next page)

100 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

#antmation.embed_limit: 20.0 # Limit, in MB, of size of base64 encoded
animation in HIML (i.e. IPython notebook)

#mpl_toolkits.legacy_colorbar: True

Total running time of the script: (0 minutes 1.538 seconds)

2.2 Intermediate

These tutorials cover some of the more complicated classes and functions in Matplotlib. They
can be useful for particular custom and complex visualizations.

2.2.1 Artist tutorial

Using Artist objects to render on the canvas.
There are three layers to the matplotlib API.
* the matplotlib.backend_bases.FigureCanvas is the area onto which the figure is drawn

* the matplotlib.backend_bases.Renderer is the object which knows how to draw on the
FigureCanvas

* and the matplotlib.artist.Artist is the object that knows how to use a renderer to paint
onto the canvas.

The FigureCanvas and Renderer handle all the details of talking to user interface toolkits like
wxPython or drawing languages like PostScript®, and the Artist handles all the high level
constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of their time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the stan-
dard graphical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AzesImage,
etc., and the containers are places to put them (4zis, Azes and Figure). The standard use is
to create a Figure instance, use the Figure to create one or more Azes or Subplot instances,
and use the Axes instance helper methods to create the primitives. In the example below,
we create a Figure instance using matplotlib.pyplot. figure(), which is a convenience method
for instantiating Figure instances and connecting them with your user interface or drawing
toolkit FigureCanvas. As we will discuss below, this is not necessary - you can work directly
with PostScript, PDF Gtk+, or wxPython FigureCanvas instances, instantiate your Figures di-
rectly and connect them yourselves - but since we are focusing here on the Artist API we’ll
let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot

The Azes is probably the most important class in the matplotlib API, and the one you will
be working with most of the time. This is because the Axes is the plotting area into which
most of the objects go, and the Axes has many special helper methods (pilot (), tezt (), hist(),
imshow()) to create the most common graphics primitives (Line2D, Tezt, Rectangle, AzesImage,
respectively). These helper methods will take your data (e.g., numpy arrays and strings) and
create primitive Artist instances as needed (e.g., Line2D), add them to the relevant containers,

2.2. Intermediate 101

https://www.wxpython.org

Matplotlib, Release 3.3.0

and draw them when requested. Most of you are probably familiar with the Subplot, which is
just a special case of an Axes that lives on a regular rows by columns grid of Subplot instances.
If you want to create an Axes at an arbitrary location, simply use the add_azes () method which
takes a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

Continuing with our example:

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2*np.pi*t)

line, = ax.plot(t, s, color='blue', lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember
Subplot is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and
adds it to the Axes.lines list. In the interactive ipython session below, you can see that the
Axes.lines list is length one and contains the same line that was returned by the line, =
ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102] : <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then
additional lines will be added to the list. You can remove lines later simply by calling the list
methods; either of these will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick
labels and axis labels:

xtext = ax.set_xlabel('my xdata') # returns o Text instance
ytext = ax.set_ylabel('my ydata')

When you call az.set_zlabel, it passes the information on the Tezt instance of the X4zis. Each
Axes instance contains an X4zis and a YAzis instance, which handle the layout and drawing of
the ticks, tick labels and axis labels.

Try creating the figure below.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
fig.subplots_adjust(top=0.8)
axl = fig.add_subplot(211)
axl.set_ylabel('volts')
axl.set_title('a sine wave')

t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2+np.pi*t)

(continues on next page)

102 Chapter 2. Tutorials

http://ipython.org/

Matplotlib, Release 3.3.0

(continued from previous page)

line, = axl.plot(t, s, color='blue', lw=2)

Fizing random state for reproducibility
np.random. seed (19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3]1)
n, bins, patches = ax2.hist(np.random.randn(1000), 50,
facecolor='yellow', edgecolor='yellow')

ax2.set_xlabel('time (s)')

plt.show()
a sine wave
1.0 -
0.5
2 50
s ©
_.DS -
_IID] T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
60 -
40 -
20 -
0 T T T T T T T T
-3 -2 -1 0 1 2 3 4
time (s)

Customizing your objects

Every element in the figure is represented by a matplotlib 4rtist, and each has an extensive
list of properties to configure its appearance. The figure itself contains a Rectangle exactly
the size of the figure, which you can use to set the background color and transparency of the
figures. Likewise, each 4zes bounding box (the standard white box with black edges in the
typical matplotlib plot, has a Rectangle instance that determines the color, transparency, and
other properties of the Axes. These instances are stored as member variables Figure.patch
and Axes.patch ("Patch” is a name inherited from MATLAB, and is a 2D ”“patch” of color on
the figure, e.q., rectangles, circles and polygons). Every matplotlib Artist has the following
properties

2.2. Intermediate 103

Matplotlib, Release 3.3.0

Property Description

alpha The transparency - a scalar from 0-1

animated | A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None

clip box The bounding box that clips the Artist

clip on Whether clipping is enabled

clip path | The path the artist is clipped to

contains | A picking function to test whether the artist contains the pick point

figure The figure instance the artist lives in, possibly None

label A text label (e.g., for auto-labeling)

picker A python object that controls object picking

trans- The transformation

form

visible A boolean whether the artist should be drawn

zorder A number which determines the drawing order

raster- Boolean; Turns vectors into raster graphics (for compression & eps trans-
ized parency)

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this
irritates Pythonistas and we plan to support direct access via properties or traits but it hasn’t
been done yet). For example, to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5%*a)

If you want to set a number of properties at once, you can also use the set method with
keyword arguments. For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist prop-
erties is to use the matplotlib.artist.getp () function (simply getp () in pyplot), which lists the
properties and their values. This works for classes derived from Artist as well, e.g., Figure
and Rectangle. Here are the Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)

fill = 1
hatch = None
height = 1
label =

linewidth or 1w = 1.0
picker = None
transform = <Affine object at 0x134cca84>

(continues on next page)

104 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

verts = ((0, 0), (0, 1), (1, 1), (1, 0))
visible = True

width = 1

window_extent = <Bbox object at 0Ox134acbcc>
x =0

y=20

zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the
interactive "help” or the matplotlib.artist for a listing of properties for a given object.

Object containers

Now that we know how to inspect and set the properties of a given object we want to configure,
we need to know how to get at that object. As mentioned in the introduction, there are two
kinds of objects: primitives and containers. The primitives are usually the things you want
to configure (the font of a Tezt instance, the width of a Line2D) although the containers also
have some properties as well - for example the Azes Artist is a container that contains many
of the primitives in your plot, but it also has properties like the xscale to control whether the
xaxis is ‘linear’ or ’log’. In this section we’ll review where the various container objects store
the Artists that you want to get at.

Figure container

The top level container Artist is the matplotlib. figure.Figure, and it contains everything in
the figure. The background of the figure is a Rectangle which is stored in Figure.patch. As
you add subplots (add_subplot()) and axes (add_azes()) to the figure these will be appended
to the Figure.azes. These are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: axl = fig.add_subplot(211)

In [158]: ax2

fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: axl
Out [159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print(fig.axes)
[<matplotlib.axes.Subplot instance at 0xd54b26c>,
<matplotlib.axes.Axes instance at 0xd3fOb2c>]

Because the figure maintains the concept of the ”“current axes” (see Figure.gca and Figure.
sca) to support the pylab/pyplot state machine, you should not insert or remove axes directly
from the axes list, but rather use the add_subplot () and add_azes () methods to insert, and the
delazes () method to delete. You are free however, to iterate over the list of axes or index into
it to get access to Axes instances you want to customize. Here is an example which turns all
the axes grids on:

for ax in fig.axes:
ax.grid(True)

2.2. Intermediate 105

Matplotlib, Release 3.3.0

The figure also has its own text, lines, patches and images, which you can use to add primitives
directly. The default coordinate system for the Figure will simply be in pixels (which is not
usually what you want) but you can control this by setting the transform property of the Artist
you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the
top-right of the figure which you can obtain by setting the Artist transform to fig.transFigure:

import matplotlib.lines as lines

fig = plt.figure()

11 lines.Line2D([0, 1], [0, 1], transform=fig.transFigure, figure=fig)
12 lines.Line2D([0, 1], [1, 0], transform=fig.transFigure, figure=fig)
fig.lines.extend([11, 12])

plt.show()

Here is a summary of the Artists the figure contains

106 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Figure attribute | Description

axes A list of Axes instances (includes Subplot)

patch The Rectangle background

images A list of FigureImage patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)

texts A list Figure Text instances

Axes container

The matplotiib.azes. Azesis the center of the matplotlib universe - it contains the vast majority
of all the Artists used in a figure with many helper methods to create and add these Artists
to itself, as well as helper methods to access and customize the Artists it contains. Like the
Figure, it contains a Patch patch which is a Rectangie for Cartesian coordinates and a Circle for
polar coordinates; this patch determines the shape, background and border of the plotting
region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor('green')

When you call a plotting method, e.g., the canonical piot() and pass in arrays or lists of
values, the method will create a matplotlib. lines.Line2D() instance, update the line with all
the Line2D properties passed as keyword arguments, add the line to the Axes.lines container,
and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, '-', color='blue', linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are
unpacking the first element of the length one list into the line variable. The line has been
added to the Axes.lines list:

In [229]: print(ax.lines)
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the
patches to the Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print(len(ax.patches))

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know
exactly what you are doing, because the Axes needs to do a few things when it creates and
adds an object. It sets the figure and axes property of the Artist, as well as the default Axes
transformation (unless a transformation is set). It also inspects the data contained in the
Artist to update the data structures controlling auto-scaling, so that the view limits can be

2.2. Intermediate 107

Matplotlib, Release 3.3.0

adjusted to contain the plotted data. You can, nonetheless, create objects yourself and add
them directly to the Axes using helper methods like add_line() and add_patch(). Here is an
annotated interactive session illustrating what is going on:

In [262]: fig, ax = plt.subplots()

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1, 1), width=5, height=12)

by default the axes instance is None
In [264]: print(rect.axes)
None

and the transformation instance is set to the "identity transform"
In [265]: print(rect.get_transform())
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance

In [267]: print(rect.axes)

Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print(rect.get_transform())
<Affine object at 0x15009ca4d>

the default axes transformation is ax.transData
In [269]: print(ax.transData)
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print(ax.get_x1im())
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print(ax.datalim.bounds)
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print(ax.get_x1lim())
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to
their respective containers. The table below summarizes a small sampling of them, the kinds
of Artist they create, and where they store them

108 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Helper method Artist Container
ax.annotate - text annotations | Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle | ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data Axeslmage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the X4Azis
and Y4zis, which handle the drawing of the ticks and labels. These are stored as instance
variables xaxis and yaxis. The XAxis and YAxis containers will be detailed below, but note that
the Axes contains many helper methods which forward calls on to the 4zis instances so you
often do not need to work with them directly unless you want to. For example, you can set
the font color of the XAxis ticklabels using the Axes helper method:

for label in ax.get_xticklabels():

label.set_color('orange')

Below is a summary of the Artists that the Axes contains

Axes attribute | Description

artists A list of Artist instances
patch Rectangle instance for Axes background
collections | A list of Collection instances
images A list of Axeslmage

legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances

texts A list of Text instances

xaxis matplotlib.axis.XAxis instance
yaxis matplotlib.axis.YAxis instance

Axis containers

The matplotlib.azis.Azis instances handle the drawing of the tick lines, the grid lines, the
tick labels and the axis label. You can configure the left and right ticks separately for the
y-axis, and the upper and lower ticks separately for the x-axis. The Axis also stores the data
and view intervals used in auto-scaling, panning and zooming, as well as the Locator and
Formatter instances which control where the ticks are placed and how they are represented
as strings.

Each Axis object contains a label attribute (this is what pyplot modifies in calls to zlabel
and ylabel) as well as a list of major and minor ticks. The ticks are azis.XTick and azis.
YTick instances, which contain the actual line and text primitives that render the ticks and
ticklabels. Because the ticks are dynamically created as needed (e.g., when panning and
zooming), you should access the lists of major and minor ticks through their accessor methods
azis.Azis.get_major_ticks and azis.Azis.get_minor_ticks. Although the ticks contain all the

2.2. Intermediate 109

Matplotlib, Release 3.3.0

primitives and will be covered below, Axis instances have accessor methods that return the
tick lines, tick labels, tick locations etc.:

fig, ax = plt.subplots()
axis = ax.xaxis
axis.get_ticklocs()

1.0

0.8

0.6

0.4

0.2 A

G.G T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Out:

array([0. , 0.2, 0.4, 0.6, 0.8, 1. 1)

’axis.get_ticklabels()

Out:

[Text (0.0, O, '0.0'), Text(0.2, O, '0.2'), Text(0.4, 0, '0.4'), Text(0.6000000000000001, O, '0.6'),
— Text(0.8, 0, '0.8'), Text(1.0, 0, '1.0')]

note there are twice as many ticklines as labels because by default there are tick lines at the
top and bottom but only tick labels below the xaxis; however, this can be customized.

axis.get_ticklines()

Out:

110 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

<a list of 12 Line2D ticklines objects>

And with the above methods, you only get lists of major ticks back by default, but you can
also ask for the minor ticks:

axis.get_ticklabels(minor=True)
axis.get_ticklines(minor=True)

Out:

<a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have correspond-
ing setters where useful, such as set_major_ formatter().)

Accessor method

get scale

get view interval
get data interval
get gridlines

get label

Description

The scale of the axis, e.g., 'log’ or ’linear’
The interval instance of the axis view limits
The interval instance of the axis data limits
A list of grid lines for the Axis

The axis label - a Text instance

get ticklabels

A list of Text instances - keyword minor=True|False

get ticklines

A list of Line2D instances - keyword minor=True|False

get ticklocs

A list of Tick locations - keyword minor=True|False

get major locator
get major formatter
get minor locator
get minor formatter
get major ticks

get minor ticks

grid

The ticker.Locator instance for major ticks

The ticker.Formatter instance for major ticks

The ticker.Locator instance for minor ticks

The ticker.Formatter instance for minor ticks

A list of Tick instances for major ticks

A list of Tick instances for minor ticks

Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick
properties

plt.figure creates a matplotlidb. figure.Figure instance
fig = plt.figure()

rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow')

axl = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = axl.patch
rect.set_facecolor('lightslategray')

for label in axl.xaxis.get_ticklabels():
label is a Text instance
label.set_color('red')
label.set_rotation(45)
label.set_fontsize(16)

for line in axl.yaxis.get_ticklines():
line is a Line2D instance
line.set_color('green')

(continues on next page)

2.2. Intermediate 111

Matplotlib, Release 3.3.0

(continued from previous page)

line.set_markersize(25)
line.set_markeredgewidth(3)

plt.show()

Tick containers

The matplotlidb.azis. Tick is the final container object in our descent from the Figure to the
Azes to the Azis to the Tick. The Tick contains the tick and grid line instances, as well as
the label instances for the upper and lower ticks. Each of these is accessible directly as an
attribute of the Tick.

Tick attribute | Description
ticklline Line2D instance
tick2line Line2D instance
gridline Line2D instance
labell Text instance
label2 Text instance

Here is an example which sets the formatter for the right side ticks with dollar signs and
colors them green on the right side of the yaxis.

112 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

import numpy as np
import matplotlib.pyplot as plt

Fizing random state for reproducibility
np.random. seed(19680801)

fig, ax = plt.subplots()
ax.plot (100*np.random.rand(20))

Use automatic StrMethodFormatter
ax.yaxis.set_major_formatter('${z:1.2f}")

ax.yaxis.set_tick_params(which='major', labelcolor='green',
labelleft=False, labelright=True)

plt.show()

. $100.0C

. $80.00

. $60.00

. $40.00

. $20.00

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

2.2.2 Legend guide

Generating legends flexibly in Matplotlib.

This legend guide is an extension of the documentation available at iegend () - please ensure
you are familiar with contents of that documentation before proceeding with this guide.

This guide makes use of some common terms, which are documented here for clarity:

2.2. Intermediate 113

Matplotlib, Release 3.3.0

legend entry A legend is made up of one or more legend entries. An entry is made up of
exactly one key and one label.

legend key The colored/patterned marker to the left of each legend label.
legend label The text which describes the handle represented by the key.

legend handle The original object which is used to generate an appropriate entry in the
legend.

Controlling the legend entries

Calling legend () with no arguments automatically fetches the legend handles and their asso-
ciated labels. This functionality is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() function returns a list of handles/artists which exist on the
Axes which can be used to generate entries for the resulting legend - it is worth noting how-
ever that not all artists can be added to a legend, at which point a “proxy” will have to be
created (see Creating artists specifically for adding to the legend (aka. Proxy artists) for
further details).

Those artists with an empty string as label or with a label starting with ” ” will be ignored.

For full control of what is being added to the legend, it is common to pass the appropriate
handles directly to 1egend ():

line_up, = plt.plot([1, 2, 3], label='Line 2')
line_down, = plt.plot([3, 2, 1], label='Line 1')
plt.legend(handles=[1line_up, line_down])

In some cases, it is not possible to set the label of the handle, so it is possible to pass through
the list of labels to legend O:

line_up, = plt.plot([1, 2, 3], label='Line 2')
line_down, = plt.plot([3, 2, 1], label='Line 1')
plt.legend([line_up, line_down], ['Line Up', 'Line Down'])

Creating artists specifically for adding to the legend (aka. Proxy artists)

Not all handles can be turned into legend entries automatically, so it is often necessary to
create an artist which can. Legend handles don’t have to exist on the Figure or Axes in order
to be used.

Suppose we wanted to create a legend which has an entry for some data which is represented
by a red color:

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt

red_patch = mpatches.Patch(color='red', label='The red data')
plt.legend(handles=[red_patch])

plt.show()

114 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0

0.8

0.6

0.4

0.2 A

B The red data

0.0 T T T
0.0 0.2 0.4 0.6

0.8

1.0

There are many supported legend handles. Instead of creating a patch of color we could have

created a line with a marker:

import matplotlib.lines as mlines
blue_line = mlines.Line2D([], [], color='blue', marker='*',
markersize=15, label='Blue stars')

plt.legend(handles=[blue_line])

plt.show()

2.2. Intermediate

115

Matplotlib, Release 3.3.0

1.0

-* Blue stars

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Legend location

The location of the legend can be specified by the keyword argument loc. Please see the
documentation at legend () for more details.

The bbox_to_anchor keyword gives a great degree of control for manual legend placement. For
example, if you want your axes legend located at the figure’s top right-hand corner instead
of the axes’ corner, simply specify the corner’s location and the coordinate system of that
location:

plt.legend(bbox_to_anchor=(1, 1),
bbox_transform=plt.gcf () .transFigure)

More examples of custom legend placement:

plt.subplot(211)
plt.plot([1, 2, 3], label="testl")
plt.plot([3, 2, 1], label="test2")

Place a legend above this subplot, expanding itself to

fully use the given bounding boz.

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left',
ncol=2, mode="expand", borderaxespad=0.)

(continues on next page)

116 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

plt.subplot(223)

plt.plot([1, 2, 3], label="testl")

plt.plot([3, 2, 1], label="test2")

Place a legend to the right of this smaller subplot.
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)

plt.show()

— testl test?

3.0

2.5

2.0 1

1.5~

1.0~

T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

3.0 + —— testl

test2
2.5

2.0 1
1.5+

1.0~

0.0 0.5 1.0 1.5 2.0

Multiple legends on the same Axes

Sometimes it is more clear to split legend entries across multiple legends. Whilst the instinc-
tive approach to doing this might be to call the iegend () function multiple times, you will find
that only one legend ever exists on the Axes. This has been done so that it is possible to call
legend () repeatedly to update the legend to the latest handles on the Axes. To keep old legend
instances, we must add them manually to the Axes:

linel,
line2,

plt.plot([1, 2, 3], label="Line 1", linestyle='--')
plt.plot([3, 2, 1], label="Line 2", linewidth=4)

Create a legend for the first line.
first_legend = plt.legend(handles=[linel], loc='upper right')

(continues on next page)

2.2. Intermediate 117

Matplotlib, Release 3.3.0

(continued from previous page)

Add the legend manually to the current Azes.
ax = plt.gca().add_artist(first_legend)

Create another legend for the second line.
plt.legend(handles=[1line2], loc='lower right')

plt.show()

3.00 A —==- Linel
2.75 1 -
2.50 1 -

2.25 4 e

2.00 A
1.75 4 -~
1.50 4 -~

1.25 4 -

l1.004 - Line 2

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Legend Handlers

In order to create legend entries, handles are given as an argument to an appropriate
HandlerBase subclass. The choice of handler subclass is determined by the following rules:

1. Update get_legend_handler_map () with the value in the handler_map keyword.

2. Check if the handle is in the newly created handler_map.

3. Check if the type of handle is in the newly created handler_map.

4. Check if any of the types in the handle’s mro is in the newly created handler_map.
For completeness, this logic is mostly implemented in get_legend handler().

All of this flexibility means that we have the necessary hooks to implement custom handlers
for our own type of legend key.

118 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

The simplest example of using custom handlers is to instantiate one of the existing
legend_handler.HandlerBase subclasses. For the sake of simplicity, let’s choose legend_handler.
HandlerLine2D which accepts a numpoints argument (numpoints is also a keyword on the
legend () function for convenience). We can then pass the mapping of instance to Handler
as a keyword to legend.

from matplotlib.legend_handler import HandlerLine2D

linel,
line2,

plt.plot([3, 2, 1], marker='o', label='Line 1')
plt.plot([1, 2, 3], marker='o', label='Line 2')

plt.legend(handler_map={linel: HandlerLine2D(numpoints=4)})

3.00 A

2.75

2.50

2.25

@ Linel

2.001 Line 2

1.75 +

1.50 +

1.25 +

1.00 +

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Out:

<matplotlib.legend.Legend object at 0x7f08b44eee50>

As you can see, "Line 1” now has 4 marker points, where ”“Line 2” has 2 (the default). Try
the above code, only change the map’s key from linel to type(line1l). Notice how now both
Line2D instances get 4 markers.

Along with handlers for complex plot types such as errorbars, stem plots and histograms, the
default handler_map has a special tuple handler (legend_handler.HandlerTuple) which simply
plots the handles on top of one another for each item in the given tuple. The following example
demonstrates combining two legend keys on top of one another:

2.2. Intermediate 119

Matplotlib, Release 3.3.0

from numpy.random import randn

z = randn(10)

red_dot, = plt.plot(z, "ro", markersize=15)
Put a white cross over some of the data.

white_cross, = plt.plot(z[:5], "w+", markeredgewidth=3, markersize=15)

plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"])

1.0 - L Attr A
Attr A+B

0.5 :} :;
0.0 -
—0.5 1 .

_l.D -

_1.5 -

Out:

<matplotlib.legend.Legend object at 0x7f£08b5991220>

The legend_handler.HandlerTuple class can also be used to assign several legend keys to the
same entry:

from matplotlib.legend_handler import HandlerLine2D, HandlerTuple

plt.plot([1, 2.5, 3], 'r-d")
plt.plot([3, 2, 11, 'k-o0')

pl,
p2,

1 = plt.legend([(p1l, p2)], ['Two keys'l, numpoints=1,
handler_map={tuple: HandlerTuple(ndivide=None)})

120 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

3.00 A
2.75 1
2.50 A
2.25 4
2.00 4+ e Two keys
1.75 4
1.50 4
1.25 4

1.00 +

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Implementing a custom legend handler

A custom handler can be implemented to turn any handle into a legend key (handles don’t nec-
essarily need to be matplotlib artists). The handler must implement a legend_artist method
which returns a single artist for the legend to use. The required signature for legend_artist
is documented at legend_artist.

import matplotlib.patches as mpatches

class AnyObject:
pass

class AnyObjectHandler:
def legend_artist(self, legend, orig_handle, fontsize, handlebox):

x0, yO = handlebox.xdescent, handlebox.ydescent

width, height = handlebox.width, handlebox.height

patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red',
edgecolor='black', hatch='xx', 1lw=3,
transform=handlebox.get_transform())

handlebox.add_artist(patch)

return patch

(continues on next page)

2.2. Intermediate 121

Matplotlib, Release 3.3.0

(continued from previous page)

plt.legend([AnyObject ()], ['My first handler'],
handler_map={AnyObject: AnyObjectHandler()})

1.0

B My first handler

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Out:

<matplotlib.legend.Legend object at 0x7f08b482bc70>

Alternatively, had we wanted to globally accept AnyObject instances without needing to man-
ually set the handler map keyword all the time, we could have registered the new handler
with:

from matplotlib.legend import Legend
Legend.update_default_handler_map({AnyObject: AnyObjectHandler()})

Whilst the power here is clear, remember that there are already many handlers implemented
and what you want to achieve may already be easily possible with existing classes. For exam-
ple, to produce elliptical legend keys, rather than rectangular ones:

from matplotlib.legend_handler import HandlerPatch

class HandlerEllipse(HandlerPatch):

(continues on next page)

122 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

def create_artists(self, legend, orig_handle,

xdescent, ydescent, width, height, fontsize, trams):
center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent

p = mpatches.Ellipse(xy=center, width=width + xdescent,
height=height + ydescent)

self.update_prop(p, orig_handle, legend)

p-set_transform(trans)

return [p]

¢ = mpatches.Circle((0.5, 0.5), 0.25, facecolor="green",
edgecolor="red", linewidth=3)
plt.gca() .add_patch(c)

plt.legend([c], ["An ellipse, not a rectangle"],
handler_map={mpatches.Circle: HandlerEllipse()})

1.0

0.8

0.6

0.4

0.2 A

@ An ellipse, not a rectangle

0.0 T T T
0.0 0.2 0.4 0.6

Out:

0.8 1.0

<matplotlib.legend.Legend object at 0x7£08b309d250>

Total running time of the script: (0 minutes 2.738 seconds)

2.2. Intermediate

123

Matplotlib, Release 3.3.0

2.2.3 Styling with cycler

Demo of custom property-cycle settings to control colors and other style properties for multi-
line plots.

Note: More complete documentation of the cycler API can be found here.

This example demonstrates two different APIs:

1. Setting the rc parameter specifying the default property cycle. This affects all subse-
quent axes (but not axes already created).

2. Setting the property cycle for a single pair of axes.

from cycler import cycler
import numpy as np
import matplotlib.pyplot as plt

First we’ll generate some sample data, in this case, four offset sine curves.

x = np.linspace(0, 2 * np.pi, 50)
offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False)
yy = np.transpose([np.sin(x + phi) for phi in offsets])

Now yy has shape

’print(yy.shape)

Out:

’(50, 4)

So yy[:, i] will give you the i-th offset sine curve. Let’s set the default prop_cycle using
matplotlib.pyplot.rc(). We'll combine a color cycler and a linestyle cycler by adding (+) two
cycler’s together. See the bottom of this tutorial for more information about combining dif-
ferent cyclers.

default_cycler = (cycler(color=['r', 'g', 'b', 'y']) +
cycler(linestyle=['-", '-=', ':', '=.']))

plt.rc('lines', linewidth=4)
plt.rc('axes', prop_cycle=default_cycler)

Now we’ll generate a figure with two axes, one on top of the other. On the first axis, we’ll
plot with the default cycler. On the second axis, we’ll set the prop_cycle using matplotlib.
azes.Azes.set_prop_cycle(), which will only set the prop_cycle for this matplotlib.azes.Azes
instance. We’ll use a second cycler that combines a color cycler and a linewidth cycler.

custom_cycler = (cycler(color=['c', 'm', 'y', 'k']) +
cycler(lw=[1, 2, 3, 41))

fig, (ax0, axl) = plt.subplots(nrows=2)

ax0.plot (yy)

ax0.set_title('Set default color cycle to rgby')
axl.set_prop_cycle(custom_cycler)

axl.plot(yy)

(continues on next page)

124 Chapter 2. Tutorials

https://matplotlib.org/cycler/

Matplotlib, Release 3.3.0

(continued from previous page)

axl.set_title('Set axes color cycle to cmyk')

Add a bit more space between the two plots.
fig.subplots_adjust (hspace=0.3)
plt.show()

Set default color cycle to rgbhy

™
agu® oy — -

T T
0 10 20 30 40 50
Set axes color cycle to cmyk

Setting prop_cycle in the matplotlibrc file or style files

Remember, a custom cycler can be set in your matplotlibrc file or a style file (style.mplstyle)
under axes.prop_cycle:

axes.prop_cycle : cycler(color='bgrcmyk')

Cycling through multiple properties

You can add cyclers:

from cycler import cycler
cc = (cycler(color=list('rgb')) +
cycler(linestyle=['-", '-=', '=-.']1))

(continues on next page)

2.2. Intermediate 125

Matplotlib, Release 3.3.0

(continued from previous page)

for d in cc:

print(d)
Results in:
{'color': 'r', 'linestyle': '-'}
{'color': 'g', 'linestyle': '--'}
{'color': 'b', 'linestyle': '-.'}

You can multiply cyclers:

from cycler import cycler
cc = (cycler(color=list('rgb')) *

cycler(linestyle=['-", '-=', '-.']))

for d in cc:

print(d)
Results in:
{'color': 'r', 'linestyle': '-'}
{'color': 'r', 'linestyle': '--'}
{'color': 'r', 'linestyle': '-.'}
{'color': 'g', 'linestyle': '-'}
{'color': 'g', 'linestyle': '--'}
{'color': 'g', 'linestyle': '-.'}
{'color': 'b', 'linestyle': '-'}
{'color': 'b', 'linestyle': '--'}
{'color': 'b', 'linestyle': '-.'}

2.2.4 Customizing Figure Layouts Using GridSpec and Other Functions

How to create grid-shaped combinations of axes.

subplots () Perhaps the primary function used to create figures and axes. It’s also
similar to matplotlib.pyplot.subplot(), but creates and places all axes on the
figure at once. See also matplotlib. figure.Figure.subplots.

GridSpec Specifies the geometry of the grid that a subplot will be placed. The num-
ber of rows and number of columns of the grid need to be set. Optionally, the
subplot layout parameters (e.g., left, right, etc.) can be tuned.

SubplotSpec Specifies the location of the subplot in the given GridSpec.

subplot2grid() A helper function that is similar to subpiot (), but uses 0-based in-
dexing and let subplot to occupy multiple cells. This function is not covered in
this tutorial.

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

126 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Basic Quickstart Guide

These first two examples show how to create a basic 2-by-2 grid using both subplots() and

gridspec.

Using subplots() is quite simple. It returns a Figure instance and an array of 4zes objects.

figl, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True)

1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 : : : : 0.0 . ; ; .
00 02 04 06 08 10 00 02 04 06 08 10
1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 0.0

0.0 0.2 0.4 0.6

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

For a simple use case such as this, gridspec is perhaps overly verbose. You have to create
the figure and GridSpec instance separately, then pass elements of gridspec instance to the
add_subplot () method to create the axes objects. The elements of the gridspec are accessed
in generally the same manner as numpy arrays.

fig2 = plt.figure(constrained_layout=True)

spec2 = gridspec.GridSpec(ncols=2,
f2_axl = fig2.add_subplot(spec2[0,
£2_ax2 = fig2.add_subplot(spec2[0,
f2_ax3 = fig2.add_subplot(spec2[1,
f2_ax4 = fig2.add_subplot(spec2[1,

nrows=2, figure=fig2)
on
11)
oD
11)

2.2. Intermediate

127

Matplotlib, Release 3.3.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6

1.0

0.8

0.8

0.6

0.4

0.2 A

0.0
0.0

0.2 0.4 0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0
1.0

0.2

0.4

0.6 0.8 1.0

0.8

0.6

0.4

0.2 A

0.0
0.0

0.2

0.4

0.6 0.8 1.0

The power of gridspec comes in being able to create subplots that span rows and columns.
Note the NumPy slice syntax for selecting the part of the gridspec each subplot will occupy.

Note that we have also used the convenience method Figure.add_gridspec instead of gridspec.
GridSpec, potentially saving the user an import, and keeping the namespace cleaner.

fig3 = plt.figure(constrained_layout=True)

gs = fig3.add_gridspec(3, 3)

f3_ax1
f3_ax1.
f3_ax2
f3_ax2.
f3_ax3
£3_ax3.
f3_ax4
f3_ax4.
£3_axb
f3_axb.

= fig3.add_subplot(gs[O,
set_title('gs[0, :1")

= fig3.add_subplot(gsl[1,
set_title('gs[1l, :-1]")

= fig3.add_subplot(gs[1i:,
set_title('gs[1:, -11")

= fig3.add_subplot(gs[-1,
set_title('gs[-1, 0]")

= fig3.add_subplot(gs[-1,
set_title('gs[-1, -2]1")

D

:-11)

-11)

oD

-2

128

Chapter 2. Tutorials

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Matplotlib, Release 3.3.0

gs[o, :]
1.0
0.5 -
0.0 ; : ; ;
0.0 0.2 0.4 0.6 0.8 1.0
s[1, :-1] s[1:, -1]
1.0 & 1.0 &
0.5 - 0.8
0.0 ; ; ; . 0.6
0.0 0.2 0.4 0.6 0.8 1.0
gs[-1, 0] gs[-1, -2]
1.0 1.0 0.4 -
0.5 - 0.5 - 0.2 1
0.0 ; 0.0 ; 0.0 ;
0.0 0.5 1.0 0.0 0.5 10 00 0.5 1.0
Out:

Text(0.5, 1.0, 'gs[-1, -21")

gridspecis also indispensable for creating subplots of different widths via a couple of methods.

The method shown here is similar to the one above and initializes a uniform grid specification,
and then uses numpy indexing and slices to allocate multiple “cells” for a given subplot.

fig4d = plt.figure(constrained_layout=True)

specd = fig4d.add_gridspec(ncols=2, nrows=2)

anno_opts = dict(xy=(0.5, 0.5), xycoords='axes fraction',
va='center', ha='center')

f4_axl = fig4.add_subplot(spec4[0, 0])

f4_ax1.annotate('GridSpec[0, 0]', **anno_opts)
fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts)
figd.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts)
fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]1', #**anno_opts)

2.2. Intermediate 129

Matplotlib, Release 3.3.0

Gridspec[0, 1:]

0.6 0.8 1.0

Gridspec[1:, 1:]

1.0 1.0
0.8 1 0.8 1
0.6 1 0.6 1
Gridspec[0, 0]
0.4 1 0.4 1
0.2 1 0.2 1
0-0 T T T T 0-0 T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
1.0 1.0
0.8 0.8
0.6 1 0.6 1
Gridspec[1:, 0]
0.4 0.4
0.2 1 0.2 1
0.0 T T T T 0.0 T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

Out:

0.6 0.8 1.0

Text(0.5, 0.5, 'GridSpec[1:, 1:1')

Another option is to use the width_ratios and height_ratios parameters. These keyword ar-
guments are lists of numbers. Note that absolute values are meaningless, only their relative
ratios matter. That means that width_ratios=[2, 4, 8] is equivalent to width_ratios=[1, 2,
4] within equally wide figures. For the sake of demonstration, we’ll blindly create the axes

within for loops since we won’t need them later.

figh = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
specb = figh.add_gridspec(ncols=3, nrows=3, width_ratios=widths,
height_ratios=heights)
for row in range(3):
for col in range(3):
ax = figb.add_subplot (specb5[row, coll)
label = 'Width: \nHeight: ' . format (widths[col], heights[row])

ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

130

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0 1.0 1.0
width: 2 width: 3 width: 1.5
051 Height: 1 037 Height: 1 0-3 71 Height: 1
0.0 : 0.0 — : : 0.0 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0
1.0 1.0 1.0
0.8 - 0.8 - 0.8 -
-1 width: 2 061 \width: 3 0-6 1 width: 1.5
Height: 3 Height: 3 Height: 3
0.4 - 0.4 - 0.4 -
0.2 - 0.2 - 0.2 -
0.0 : 0.0 — : : 0.0 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0
1.00 1.00 1.00
0.75 - 0.75 - 0.75 -
width: 2 width: 3 width: 1.5
030 7 Height: 2 03079 Height: 2 030 7 Height: 2
0.25 - 0.25 - 0.25 -
0.00 : 0.00 — : : 0.00 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0

Learning to use width_ratios and height_ratios is particularly useful since the top-level func-
tion subplots() accepts them within the gridspec_kw parameter. For that matter, any param-
eter accepted by GridSpec can be passed to subplots() via the gridspec_kw parameter. This
example recreates the previous figure without directly using a gridspec instance.

gs_kw = dict(width_ratios=widths, height_ratios=heights)
fig6, £6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,
gridspec_kw=gs_kw)
for r, row in enumerate(f6_axes):
for c, ax in enumerate(row):
label = 'Width: \nHeight: ' . format(widths[c], heights[r])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

2.2. Intermediate 131

Matplotlib, Release 3.3.0

1.0 1.0 1.0
width: 2 width: 3 width: 1.5
051 Height: 1 037 Height: 1 0-3 71 Height: 1
0.0 : 0.0 — : : 0.0 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0
1.0 1.0 1.0
0.8 - 0.8 - 0.8 -
-1 width: 2 061 \width: 3 0-6 1 width: 1.5
Height: 3 Height: 3 Height: 3
0.4 - 0.4 - 0.4 -
0.2 - 0.2 - 0.2 -
0.0 : 0.0 — : : 0.0 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0
1.00 1.00 1.00
0.75 - 0.75 - 0.75 -
width: 2 width: 3 width: 1.5
030 7 Height: 2 03079 Height: 2 030 7 Height: 2
0.25 - 0.25 - 0.25 -
0.00 : 0.00 — : : 0.00 :
0.0 0.5 1.0 00 02 04 06 08 10 00 05 1.0

The subplots and get_gridspec methods can be combined since it is sometimes more conve-
nient to make most of the subplots using subplots and then remove some and combine them.
Here we create a layout with the bottom two axes in the last column combined.

fig7, £7_axs = plt.subplots(ncols=3, nrows=3)
gs = £7_axs[1, 2].get_gridspec()
remove the underlying azes
for ax in f7_axs[1:, -1]:
ax.remove ()
axbig = fig7.add_subplot(gs[l:, -11)
axbig.annotate('Big Axes \nGridSpec[1l:, -1]', (0.1, 0.5),
xycoords="'axes fraction', va='center')

fig7.tight_layout ()

132 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0

0.5 4

0.0

1.0

0.5

0.5 4

0.0

0.5

1.0

0.5 4

0.0
0.0

0.5

1.0

1.0

0.5 4

0.0

1.0

0.5

0.5 4

0.0

0.5

1.0

0.5 4

0.0
0.0

Fine Adjustments to a Gridspec Layout

0.5

1.0

1.0

0.5~

0.0

1.0

0 0.5

0.8 1

0.6

0.4 1

0.2 1

Big Axes
Gridspec[1:, -1]

0.0

0.0 0.5

1.0

When a GridSpec is explicitly used, you can adjust the layout parameters of subplots that
are created from the GridSpec. Note this option is not compatible with constrained_layout or
Figure.tight_layout which both adjust subplot sizes to fill the figure.

fig8 = plt.figure(constrained_layout=False)

gsl = fig8.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48, wspace=0.05)
fig8.add_subplot(gsi[:-1, :1)
fig8.add_subplot(gsi[-1, :-1])
fig8.add_subplot(gsi[-1, -1])

£8_ax1
£8_ax2
£8_ax3

2.2. Intermediate

133

Matplotlib, Release 3.3.0

1.0

0.8
0.6
0.4
0.2

0.0 : : . :
1.0 : : 9.8

0.5 4 0.5

0.0 | —o |

T
0.00 025 050 075 1@0 05 1.0

This is similar to subplots_adjust (), but it only affects the subplots that are created from the
given GridSpec.

For example, compare the left and right sides of this figure:

fig9 = plt.figure(constrained_layout=False)

gsl = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48,
wspace=0.05)

f9_axl = fig9.add_subplot(gsi[:-1, :1)

f9_ax2 = fig9.add_subplot(gsi[-1, :-1])

£9_ax3 = fig9.add_subplot(gsi[-1, -1])

gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98,
hspace=0.05)

f9_ax4 = fig9.add_subplot(gs2[:, :-11)

f9_axb = fig9.add_subplot(gs2[:-1, -1])

f9_ax6 = fig9.add_subplot(gs2[-1, -1])

134 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0 1.0 t
0.8 0.8
0.8
0.6 0.6
0.4 1 0.6 0.4 -
0.2 ob -
0.4
0.0 . . . ;
188
1020 0.2 0.4 0.6 0.8 1.0 : i
0.75 -
0.2
0.5 0.5 H 0.5p ~
0.25 -
0.0 . . —6.6 . 0.0 . . —8-60
0.00 025 050 075 1@0 05 1.0 0.00 0.25 050 0.75 1.000 1

GridSpec using SubplotSpec

You can create GridSpec from the SubpiotSpec, in which case its layout parameters are set to
that of the location of the given SubplotSpec.

Note this is also available from the more verbose gridspec.GridSpecFromSubplotSpec.

figl0 = plt.figure(constrained_layout=True)
gs0 = figl0.add_gridspec(l, 2)

gs00 = gs0[0] .subgridspec(2, 3)
gs01 = gsO[1].subgridspec(3, 2)

for a in range(2):
for b in range(3):
fig10.add_subplot(gs00[a, bl)
figl10.add_subplot(gsO1i[b, al)

2.2. Intermediate 135

Matplotlib, Release 3.3.0

1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 0.0
0 1 0
1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 0.0
0 1 0

A Complex Nested GridSpec using SubplotSpec

1.0

0.8

0.6

0.4

0.2

0.0

1.00
0.75
0.50
0.25

0.00

1.00

0.75

1.0

1 o050

0.8

0.6

0.4

0.2 A

0.25

0.00

1.00
0.75
0.50

0.25

0.0

0.00

T

0.0 0.5 1.0
T

0.0 0.5 1.0
T

0.0 0.5 1.0

1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

1.00

0.75

0.50

0.25

0.00

T

0.0 0.5 1.0
T

0.0 0.5 1.0
T

0.0 0.5 1.0

Here’s a more sophisticated example of nested GridSpec where we put a box around each

cell of the outer 4x4 grid, by hiding appropriate spines in each of the inner 3x3 grids.

import numpy as np

def squiggle_xy(a, b, ¢, d, i=np.arange(0.0, 2+#np.pi, 0.05)):
return np.sin(i*a)#*np.cos(i*b), np.sin(i*c)*np.cos(i*d)

figll = plt.figure(figsize=(8, 8), constrained_layout=False)

outer_grid = figll.add_gridspec(4, 4, wspace=0, hspace=0)

for a in range(4):

for b in range(4):
gridspec inside gridspec
inner_grid = outer_grid[a, b].subgridspec(3, 3, wspace=0, hspace=0)

axs = inner_grid.subplots()

for (c, d), ax in np.ndenumerate(axs):
ax.plot(*squiggle_xy(a + 1, b + 1, ¢ + 1, d + 1))
ax.set(xticks=[], yticks=[])

Create all subplots for the inner grid.

(continues on next page)

136

Chapter 2. Tutorials

Matplotlib, Release 3.3.0
continued from previous page

=

e

N2/

A
Y,

[/
W

=

)

%
KL DK
/T @

P& P ES =

Z%
I
Wil
/B

SN

>4

V)
XEH9<=

N e

=
3

K2 = K=

11111
llllll

Q

T\,
A

o
4o

KT <R/

S KL

eeeeee
nnnnnn
.........

PPPPPP
sssssss
xxxxxx
aaaaaa

137

2.2. Intermediate

Matplotlib, Release 3.3.0

References

The usage of the following functions and methods is shown in this example:

matplotlib.pyplot.subplots
matplotlib.figure.Figure.add_gridspec
matplotlib.figure.Figure.add_subplot
matplotlib.gridspec.GridSpec
matplotlib.gridspec.SubplotSpec.subgridspec
matplotlib.gridspec.GridSpecFromSubplotSpec

Total running time of the script: (0 minutes 8.023 seconds)

2.2.5 Constrained Layout Guide

How to use constrained-layout to fit plots within your figure cleanly.

constrained layout automatically adjusts subplots and decorations like legends and colorbars
so that they fit in the figure window while still preserving, as best they can, the logical layout
requested by the user.

constrained layout is similar to tight layout, but uses a constraint solver to determine the
size of axes that allows them to fit.

constrained layout needs to be activated before any axes are added to a figure. Two ways of
doing so are

* using the respective argument to subplots() or figure(), €.g.:

’plt.subplots(constrained_layout=True)

e activate it via rcParams, like:

’plt.rcParams['figure.constrained_layout.use'] = True

Those are described in detail throughout the following sections.

Warning: Currently Constrained Layout is experimental. The behaviour and API are
subject to change, or the whole functionality may be removed without a deprecation period.
If you require your plots to be absolutely reproducible, get the Axes positions after running
Constrained Layout and use ax.set_position() in your code with constrained_layout=False.

Simple Example

In Matplotlib, the location of axes (including subplots) are specified in normalized figure coor-
dinates. It can happen that your axis labels or titles (or sometimes even ticklabels) go outside
the figure area, and are thus clipped.

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors
import matplotlib.gridspec as gridspec
import numpy as np

(continues on next page)

138 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

plt.rcParams['savefig.facecolor'] = "0.8"
plt.rcParams['figure.figsize'] = 4.5, 4.
plt.rcParams['figure.max_open_warning'] = 50

def example_plot(ax, fontsize=12, hide_labels=False):
ax.plot([1, 21)

ax.locator_params (nbins=3)

if hide_labels:
ax.set_xticklabels([])
ax.set_yticklabels([])

else:
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

fig, ax = plt.subplots(constrained_layout=False)
example_plot(ax, fontsize=24)

Title

2.0+

1.5

y-lavci

1.0

T
0.0 0.5 1.0
v Iahal

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done
by adjusting the subplot params (Move the edge of an axes to make room for tick labels).
However, specifying your figure with the constrained_layout=True kwarg will do the adjusting
automatically.

fig, ax = plt.subplots(constrained_layout=True)
example_plot(ax, fontsize=24)

2.2. Intermediate 139

Matplotlib, Release 3.3.0

Title

2.0 4

1.5

y-label

1.0

T
0.0 0.5 1.0

X-label

When you have multiple subplots, often you see labels of different axes overlapping each
other.

fig, axs = plt.subplots(2, 2, constrained_layout=False)
for ax in axs.flat:
example_plot (ax)

140 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title

y-label

Totte 1.0
o
]
1o
=

1.0 - | oA | |
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

Specifying constrained_layout=True in the call to plt.subplots causes the layout to be properly

constrained.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:
example_plot (ax)

2.2. Intermediate

141

Matplotlib, Release 3.3.0

Title Title
2.0 2.0 4
2 2
o 1.5 - o 1.5
= =
1.0 1. . . 1.0 1 . .
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0 4
2 2
o 1.5 - o 1.5
= =
1.0 1. . . 1.0 1 . .
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Colorbars

If you create a colorbar with Figure. colorbar, you need to make room forit. constrained_layout
does this automatically. Note that if you specify use_gridspec=True it will be ignored because
this option is made for improving the layout via tight_layout.

Note: For the pcolormesh kwargs (pc_kwargs) we use a dictionary. Below we will assign
one colorbar to a number of axes each containing a ScalarMappable; specifying the norm and
colormap ensures the colorbar is accurate for all the axes.

arr = np.arange(100) .reshape((10, 10))

norm = mcolors.Normalize(vmin=0., vmax=100.)

see note above: this makes all pcolormesh calls consistent:
pc_kwargs = {'rasterized': True, 'cmap': 'viridis', 'norm': norm}
fig, ax = plt.subplots(figsize=(4, 4), constrained_layout=True)
im = ax.pcolormesh(arr, **pc_kwargs)

fig.colorbar(im, ax=ax, shrink=0.6)

142 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

10

8 100
80
6
60
40
4
20
2 0

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b4146220>

If you specify a list of axes (or other iterable container) to the ax argument of colorbar, con-

strained layout will take space from the specified axes.

fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)

2.2. Intermediate

143

Matplotlib, Release 3.3.0

10 10
8
) 100
4
80
2
0 60
10 10 40
8
20
6
0

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b462b790>

If you specify a list of axes from inside a grid of axes, the colorbar will steal space appropri-

ately, and leave a gap, but all subplots will still be the same size.

fig, axs = plt.subplots(3, 3, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:
im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs[1:,]J[:, 1], shrink=0.8)
fig.colorbar(im, ax=axs[:, -1], shrink=0.6)

144

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

100

80
100 &0
80 a0
60

20
40

0
20
0

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b5445c40>

Note that there is a bit of a subtlety when specifying a single axes as the parent. In the
following, it might be desirable and expected for the colorbars to line up, but they don’t
because the colorbar paired with the bottom axes is tied to the subplotspec of the axes, and

hence shrinks when the gridspec-level colorbar is added.

fig, axs = plt.subplots(3, 1, figsize=(4, 4), constrained_layout=True)
for ax in axs[:2]:
im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs[:2], shrink=0.6)
im = axs[2].pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs[2], shrink=0.6)

2.2. Intermediate

145

Matplotlib, Release 3.3.0

10

100

75

25

100

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b4bcf700>

The API to make a single-axes behave like a list of axes is to specify it as a list (or other iterable
container), as below:

fig, axs = plt.subplots(3, 1, figsize=(4, 4), constrained_layout=True)
for ax in axs[:2]:
im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs[:2], shrink=0.6)
im = axs[2].pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=[axs[2]], shrink=0.6)

146 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

100

100

Out:

<matplotlib.colorbar.Colorbar object at 0x7f08b576£370>

Suptitle

constrained_layout can also make room for suptitle.

fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:
im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)
fig.suptitle('Big Suptitle')

2.2. Intermediate

147

Matplotlib, Release 3.3.0

Big Suptitle
10 10
8 8
6 6 100
4 4
5 5 80
0 0 60
10 10 40
20
0

o Moo O @
o Moo O @

Out:

Text(0.5, 0.98, 'Big Suptitle')

Legends

Legends can be placed outside of their parent axis. Constrained-layout is designed to handle
this for Azes.legend(). However, constrained-layout does not handle legends being created
via Figure. legend () (yet).

fig, ax = plt.subplots(constrained_layout=True)
ax.plot(np.arange(10), label='This is a plot')
ax.legend(loc='center left', bbox_to_anchor=(0.8, 0.5))

148 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

—— This is a plot

o -
FJ
+a
on
=]

Out:

<matplotlib.legend.Legend object at 0x7f08b1£8d340>

However, this will steal space from a subplot layout:

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)
axs[0] .plot(np.arange(10))

axs[1] .plot(np.arange(10), label='This is a plot')

axs[1] .legend(loc="'center left', bbox_to_anchor=(0.8, 0.5))

8 8
6 6
—— This is a plot

44 44 P
2 2
0 A 0 A

T T T T

0 5 0 5
Out:

<matplotlib.legend.Legend object at 0x7f08ble9f0al0>

In order for a legend or other artist to not steal space from the subplot layout, we can leg.
set_in_layout(False). Of course this can mean the legend ends up cropped, but can be useful
if the plot is subsequently called with fig.savefig('outname.png', bbox_inches='tight'). Note,

2.2. Intermediate 149

Matplotlib, Release 3.3.0

however, that the legend’s get_in_layout status will have to be toggled again to make the saved
file work, and we must manually trigger a draw if we want constrained layout to adjust the
size of the axes before printing.

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)

axs[0] .plot (np.arange(10))

axs[1] .plot(np.arange(10), label='This is a plot')

leg = axs[1].legend(loc='center left', bbox_to_anchor=(0.8, 0.5))
leg.set_in_layout(False)

trigger a draw so that comnstrained_layout is executed once

before we turn it off when printing....

fig.canvas.draw()

we want the legend included in the bbox_inches='tight' calcs.
leg.set_in_layout(True)

we don't want the layout to change at this point.
fig.set_constrained_layout(False)

fig.savefig('CLOl.png', bbox_inches='tight', dpi=100)

8 8
6 6
4 4
2 1 2 1
0 - 0 -
T T T T T T T T
0.0 25 50 75 0.0 25 50 75

The saved file looks like:

8 8
6 1 6 1
a4 a4 —— This is a plot
2 2
0 4 0 4
T T T T T T T T
0.0 25 50 75 0.0 25 50 75

A better way to get around this awkwardness is to simply use the legend method provided by
Figure. legend:

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)
axs[0] .plot(np.arange(10))

lines = axs[1].plot(np.arange(10), label='This is a plot')

labels = [1l.get_label() for 1 in lines]

leg = fig.legend(lines, labels, loc='center left',

(continues on next page)

150 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

bbox_to_anchor=(0.8, 0.5), bbox_transform=axs[1].transAxes)
fig.savefig('CLO2.png', bbox_inches='tight', dpi=100)

8 8
6 6
4 4
2 1 2 1
0 - 0 -
T T T T T T T T
0.0 25 50 75 0.0 25 50 75

The saved file looks like:

8 1 8 1
6 6
—— This is a plot
41 41 P
2 2
0 1 0 1
T T T T T T T T
00 25 50 75 00 25 50 75

Padding and Spacing

For constrained layout, we have implemented a padding around the edge of each axes. This
padding sets the distance from the edge of the plot, and the minimum distance between
adjacent plots. It is specified in inches by the keyword arguments w_pad and h_pad to the
ﬁlnction.set_constrained_layout_pads:

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=4/72, h_pad=4/72, hspace=0, wspace=0)

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)

2.2. Intermediate 151

Matplotlib, Release 3.3.0

AN
N\

AN
N\

AN
N\

AN
N\

Spacing between subplots is set by wspace and hspace. There are specified as a fraction of the
size of the subplot group as a whole. If the size of the figure is changed, then these spaces
change in proportion. Note in the below how the space at the edges doesn’t change from the
above, but the space between subplots does.

152 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0.2, wspace=0.2)

Spacing with colorbars

Colorbars will be placed wspace and hsapce apart from other subplots. The padding between
the colorbar and the axis it is attached to will never be less than w_pad (for a vertical colorbar)
or h_pad (for a horizontal colorbar). Note the use of the pad kwarg here in the colorbar call. It
defaults to 0.02 of the size of the axis it is attached to.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:
pc = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(pc, ax=ax, shrink=0.6, pad=0)
ax.set_xticklabels('")
ax.set_yticklabels('')
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0.2, wspace=0.2)

2.2. Intermediate 153

Matplotlib, Release 3.3.0

100 100
%) %)
0 0
100 100
%) %)
0 0

In the above example, the colorbar will not ever be closer than 2 pts to the plot, but if we
want it a bit further away, we can specify its value for pad to be non-zero.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:
pc = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=ax, shrink=0.6, pad=0.05)
ax.set_xticklabels('')
ax.set_yticklabels('')
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0.2, wspace=0.2)

154 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

100 100
%) %)
0 0
100 100
%) %)
0 0

rcParams

There are five rcParams that can be set, either in a script or in the matplotlibrc file. They all
have the prefix figure.constrained_layout:

* use: Whether to use constrained layout. Default is False

* w_pad, h_pad: Padding around axes objects. Float representing inches. Default is
3./72. inches (3 pts)

* wspace, hspace: Space between subplot groups. Float representing a fraction of the
subplot widths being separated. Default is 0.02.

plt.rcParams['figure.constrained_layout.use'] = True
fig, axs = plt.subplots(2, 2, figsize=(3, 3))
for ax in axs.flat:

example_plot(ax)

2.2. Intermediate 155

Matplotlib, Release 3.3.0

Title Title
2.0 2.0
8 8
w15+ T 15
]]
- -
1.0 , , 1.0 4 , ,
0.0 0.5 1.0 0.0 05 1.0
x-label x-label
Title Title
2.0 2.0
8 8
o 1.5 o 15 -
]]
- -
1.0 & , , 1.0 , ,
0.0 0.5 1.0 0.0 05 1.0
x-label x-label

Use with GridSpec

constrained layout is meant to be used with subplots() or GridSpec() and add_subplot ().

Note that in what follows constrained_layout=True

fig = plt.figure()

gsl = gridspec.GridSpec(2, 1, figure=fig)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1i[1])

example_plot(axl)
example_plot(ax2)

156 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title
2.0 4
2
o 1.5
=
1.0 _: . .
0.0 0.5 1.0
x-label
Title
2.0 4
2
o 1.5
=
1.0 _: . .
0.0 0.5 1.0
x-label

More complicated gridspec layouts are possible. Note here we use the convenience functions
add_gridspec and subgridspec.

fig = plt.figure()

gs0 = fig.add_gridspec(l, 2)

gsl = gs0[0].subgridspec(2, 1)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot (ax1)
example_plot(ax2)

gs2 = gs0[1].subgridspec(3, 1)

for ss in gs2:
ax = fig.add_subplot(ss)
example_plot(ax)
ax.set_title("")
ax.set_xlabel("")

ax.set_xlabel("x-label", fontsize=12)

2.2. Intermediate 157

Matplotlib, Release 3.3.0

Title 2.0
2.0 @
S 151
v <
]
JE 1.5 1 1'0 o T T T
]
> 0.0 0.5 1.0
1.0 - —
T T —
0.0 0.5 10 @ -
x-label L =
i -
T]tjfi 1.0 1 : |
2.0 H 0.0 0.5 1.0
E _ 2.0_
o 1.5 - a
= © 151
]
-
1.0 1 T T T 1.0 T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

Text (0.5, 0, 'x-label')

Note that in the above the left and columns don’t have the same vertical extent. If we want
the top and bottom of the two grids to line up then they need to be in the same gridspec:

fig = plt.figure()

gsO = fig.add_gridspec(6, 2)
axl = fig.add_subplot(gsO[:3, 0])
ax2 = fig.add_subplot(gs0[3:, 0])

example_plot(axl)
example_plot (ax2)

ax = fig.add_subplot(gs0[0:2, 1])
example_plot (ax)

ax = fig.add_subplot(gs0[2:4, 1])
example_plot(ax)

ax = fig.add_subplot(gsO[4:, 1])
example_plot(ax)

158 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title
2.0 © 2.0 1
_ © 15+
@ l
= 1.5 - - 1.0 -5 T
4 - 0.0 0.5 1.0
= x-label
1.0 , , Title
0.0 0.5 10 - 2.0 -
x-label 2 151
Title > 1.0 ; . :
504 0.0 0.5 1.0
x-label
8 5] Title
1] - — E
o 2.0
l @
= O
© 15-
I
1.0 L T T = 1'ﬂ_l T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

This example uses two gridspecs to have the colorbar only pertain to one set of pcolors. Note
how the left column is wider than the two right-hand columns because of this. Of course, if
you wanted the subplots to be the same size you only needed one gridspec.

def docomplicated(suptitle=None):
fig = plt.figure()

gsO = fig.add_gridspec(l, 2, figure=fig, width_ratios=[1., 2.])
gsl = gs0[0] .subgridspec(2, 1)
gsr = gsO[1].subgridspec(2, 2)

for gs in gsl:
ax = fig.add_subplot(gs)
example_plot (ax)

axs = []

for gs in gsr:
ax = fig.add_subplot(gs)
pcm = ax.pcolormesh(arr, **pc_kwargs)
ax.set_xlabel('x-label')
ax.set_ylabel('y-label')
ax.set_title('title')

axs += [ax]
fig.colorbar(pcm, ax=axs)
if suptitle is not Nonme:

fig.suptitle(suptitle)

docomplicated()

2.2. Intermediate

159

Matplotlib, Release 3.3.0

Title title title
2.0 4 10.0 100
= 7.5
= b b
© 15 g 50 = 80
I
= e e
2.5
o/ 0.0
0.0 0.5 1.0 0 10 60
x-label x-label
Title title
2.0 - 10.0 &
= 7.5
b b
© 15 5 < 20
. © ©
> > -
2.5
A 0.0 0
0.0 05 10
x-label

Manually setting axes positions

There can be good reasons to manually set an axes position. A manual call to set_position will

set the axes so constrained layout has no effect on it anymore. (Note that constrained layout
still leaves the space for the axes that is moved).

fig, axs = plt.subplots(l, 2)
example_plot(axs[0], fontsize=12)
axs[1] .set_position([0.2, 0.2, 0.4, 0.4])

160 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title

2.0+

1.0

1.5 g4

y-label

0.6

0.4

0.

0% T T T
1.047000 0.25 050 0.75| 1.00
T T T
0.0 0.5 1.0
x-label

If you want an inset axes in data-space, you need to manually execute the layout using fig.
execute_constrained_layout () call. The inset figure will then be properly positioned. However,
it will not be properly positioned if the size of the figure is subsequently changed. Similarly, if
the figure is printed to another backend, there may be slight changes of location due to small
differences in how the backends render fonts.

from matplotlib.transforms import Bbox

fig, axs = plt.subplots(l, 2)

example_plot(axs[0], fontsize=12)

fig.execute_constrained_layout ()

put into data-space:

bb_data_ax2 = Bbox.from_bounds(0.5, 1., 0.2, 0.4)

disp_coords = axs[0] .transData.transform(bb_data_ax2)
fig_coords_ax2 = fig.transFigure.inverted() .transform(disp_coords)
bb_ax2 = Bbox(fig_coords_ax2)

ax2 = fig.add_axes(bb_ax2)

2.2. Intermediate 161

Matplotlib, Release 3.3.0

Title
1.0
2.0 -
0.8 -
_ 0.6 -
8
o 1.5
]
-
0.4 -
0.2 -
0.25 -
1.0 0.00
. &t - 0.0 :
0.0 0.5 1.0 0.0 0.5 1.0
x-label

Manually turning off constrained_layout

constrained_layout usually adjusts the axes positions on each draw of the figure. If you want
to get the spacing provided by constrained_layout but not have it update, then do the initial
draw and then call fig.set_constrained_layout(False). Thisis potentially useful for animations
where the tick labels may change length.

Note that constrained_layout is turned off for zooM and PAN GUI events for the backends that
use the toolbar. This prevents the axes from changing position during zooming and panning.

Limitations

Incompatible functions

constrained_layout will not work on subplots created via pyplot.subplot. The reason is that
each call to pyplot.subplot creates a separate GridSpec instance and constrained_layout uses
(nested) gridspecs to carry out the layout. So the following fails to yield a nice layout:

fig = plt.figure()

axl = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)

example_plot(ax1)
example_plot(ax2)
example_plot (ax3)

162 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title

y-label

1.5

y-label

1.0+

1.0

T T T T
0.0 0.5 1.0 0.0 0.5
x-label x-label

Of course that layout is possible using a gridspec:

1.0

fig = plt.figure()
gs = fig.add_gridspec(2, 2)

axl = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[:, 1])

example_plot(axl)
example_plot(ax2)
example_plot (ax3)

2.2. Intermediate

163

Matplotlib, Release 3.3.0

Title Title
2.0
2.0 -
2
o 1.5 -
=
1.0 ; . .
0.0 0.5 10 3
x-label Q 15
. -
Title >
2.0
2
o 1.5 -
=
1.0 -
1.0 1 T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

Similarly, subplot2grid() doesn’t work for the same reason: each call creates a different par-
ent gridspec.

fig = plt.figure()

axl = plt.subplot2grid((3, 3), (0, 0))

ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)

ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot(axl)
example_plot (ax2)
example_plot(ax3)
example_plot(ax4)

164 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title
o
]
1o
=
Fitte——
5 10
H
2
- 5 1
=
1.0 1]0
T T T T T T
0.0 0.5 1.0 0.0 05 1.0
x-label x-label

The way to make this plot compatible with constrained_layout is again to use gridspec directly

fig = plt.figure()
gs = fig.add_gridspec(3, 3)

axl = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1:1)
ax3 = fig.add_subplot(gs[1:, 0:2])
ax4 = fig.add_subplot(gs[1:, -1])

example_plot(ax1)
example_plot (ax2)
example_plot(ax3)
example_plot (ax4)

2.2. Intermediate 165

Matplotlib, Release 3.3.0

Title Title
2.0 - 2.0 1
2 2
w15+ T 15
= =
1.0 , , 1.0 L , ,
0.0 05 10 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0
2 2
o 1.5 o 15 -
= =
1.0~ | | 1.0 1/ | |
0.0 0.5 1.0 0.0 05 1.0
x-label x-label

Other Caveats

* constrained_layout only considers ticklabels, axis labels, titles, and legends. Thus, other
artists may be clipped and also may overlap.

* It assumes that the extra space needed for ticklabels, axis labels, and titles is indepen-
dent of original location of axes. This is often true, but there are rare cases where it is
not.

* There are small differences in how the backends handle rendering fonts, so the results
will not be pixel-identical.

* An artist using axes coordinates that extend beyond the axes boundary will result in
unusual layouts when added to an axes. This can be avoided by adding the artist directly
to the Figure using add_artist (). See ConnectionPatch for an example.

Debugging

Constrained-layout can fail in somewhat unexpected ways. Because it uses a constraint solver
the solver can find solutions that are mathematically correct, but that aren’t at all what the
user wants. The usual failure mode is for all sizes to collapse to their smallest allowable value.
If this happens, it is for one of two reasons:

1. There was not enough room for the elements you were requesting to draw.

2. There is a bug - in which case open an issue at https://github.com/matplotlib/matplotlib/
issues.

166 Chapter 2. Tutorials

https://github.com/matplotlib/matplotlib/issues
https://github.com/matplotlib/matplotlib/issues

Matplotlib, Release 3.3.0

If there is a bug, please report with a self-contained example that does not require outside
data or dependencies (other than numpy).

Notes on the algorithm

The algorithm for the constraint is relatively straightforward, but has some complexity due
to the complex ways we can layout a figure.

Figure layout

Figures are laid out in a hierarchy:
1. Figure: fig = plt.figure()
a. Gridspec gs0 = gridspec.GridSpec(l, 2, figure=fig)
i. Subplotspec: ss = gs[0, 0]
1. Axes: ax0 = fig.add_subplot(ss)
ii. Subplotspec: ss = gs[0, 1]
1. Gridspec: gsR = gridspec.GridSpecFromSubplotSpec(2, 1, ss)
¢ Subplotspec: ss = gsR[0, 0]
- Axes: axRO = fig.add_subplot(ss)
e Subplotspec: ss = gsR[1, 0]
- Axes: axR1 = fig.add_subplot(ss)

Each item has a layoutbox associated with it. The nesting of gridspecs created with
GridSpecFromSubplotSpec can be arbitrarily deep.

Each 4zes has two layoutboxes. The first one, ax._layoutbox represents the outside of the Axes
and all its decorations (i.e. ticklabels, axis labels, etc.). The second layoutbox corresponds to
the Axes’ ax.position, which sets where in the figure the spines are placed.

Why so many stacked containers? Ideally, all that would be needed are the Axes lay-
out boxes. For the Gridspec case, a container is needed if the Gridspec is nested via
GridSpecFromSubplotSpec. At the top level, it is desirable for symmetry, but it also makes room
for suptitle.

For the Subplotspec/Axes case, Axes often have colorbars or other annotations that need to
be packaged inside the Subplotspec, hence the need for the outer layer.

Simple case: one Axes

For a single Axes the layout is straight forward. The Figure and outer Gridspec layoutboxes
coincide. The Subplotspec and Axes boxes also coincide because the Axes has no colorbar.
Note the difference between the red pos box and the green ax box is set by the size of the
decorations around the Axes.

In the code, this is accomplished by the entries in do_constrained_layout () like:

ax._poslayoutbox.edit_left_margin_min(-bbox.x0 + pos.x0 + w_padt)

2.2. Intermediate 167

Matplotlib, Release 3.3.0

from matplotlib._layoutbox import plot_children

fig, ax = plt.subplots(constrained_layout=True)
example_plot(ax, fontsize=24)
plot_children(fig, fig._layoutbox, printit=False)

pOS

ax000688

Simple case: two Axes

For this case, the Axes layoutboxes and the Subplotspec boxes still co-incide. However, be-
cause the decorations in the right-hand plot are so much smaller than the left-hand, so the
right-hand layoutboxes are smaller.

The Subplotspec boxes are laid out in the code in the subroutine arange_subplotspecs(), which
simply checks the subplotspecs in the code against one another and stacks them appropriately.

The two pos axes are lined up. Because they have the same minimum row, they are lined up
at the top. Because they have the same maximum row they are lined up at the bottom. In the
code this is accomplished via the calls to layoutbox.align. If there was more than one row,
then the same horizontal alignment would occur between the rows.

The two pos axes are given the same width because the subplotspecs occupy the same number
of columns. This is accomplished in the code where dcols0 is compared to dcolsC. If they are
equal, then their widths are constrained to be equal.

While it is a bit subtle in this case, note that the division between the Subplotspecs is not
centered, but has been moved to the right to make space for the larger labels on the left-hand
plot.

168 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

fig, ax = plt.subplots(l, 2, constrained_layout=True)
example_plot(ax[0], fontsize=32)

example_plot(ax[1], fontsize=8)

plot_children(fig, fig._layoutbox, printit=False)

pOS pOS

ax000693

Ex000691

Two Axes and colorbar

Adding a colorbar makes it clear why the Subplotspec layoutboxes must be different from the
axes layoutboxes. Here we see the left-hand subplotspec has more room to accommodate the
colorbar, and that there are two green ax boxes inside the ss box.

Note that the width of the pos boxes is still the same because of the constraint on their widths
because their subplotspecs occupy the same number of columns (one in this example).

The colorbar layout logic is contained in make_azes which calls _constrained_layout.
layoutcolorbarsingle() for cbars attached to a single axes, and _constrained_layout.
layoutcolorbargridspec() if the colorbar is associated with a gridspec.

fig, ax = plt.subplots(l, 2, constrained_layout=True)
im = ax[0] .pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=ax[0], shrink=0.6)

im = ax[1].pcolormesh(arr, **pc_kwargs)
plot_children(fig, fig._layoutbox, printit=False)

2.2. Intermediate 169

Matplotlib, Release 3.3.0

pOS

poS

ax000696 char Ex 000698

Colorbar associated with a Gridspec

This example shows the Subplotspec layoutboxes being made smaller by a colorbar layoutbox.
The size of the colorbar layoutbox is set to be shrink smaller than the vertical extent of the
pos layoutboxes in the gridspec, and it is made to be centered between those two points.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)
plot_children(fig, fig._layoutbox, printit=False)

170

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

poSs

pOS

ax000701 ax000703

poSs

pOS

Ex000705 ax000707

Uneven sized Axes

There are two ways to make axes have an uneven size in a Gridspec layout, either by specifying
them to cross Gridspecs rows or columns, or by specifying width and height ratios.

The first method is used here. The constraint that makes the heights be correct is in the code
where drowsC < drowsO which in this case would be 1 is less than 2. So we constrain the height

of the 1-row Axes to be less than half the height of the 2-row Axes.

Note: This algorithm can be wrong if the decorations attached to the smaller axes are very

large, so there is an unaccounted-for edge case.

fig =

gs =
ax =
im =
ax =
im =
ax =
im =
plot_

plt.figure(constrained_layout=True)
gridspec.GridSpec(2, 2, figure=fig)
fig.add_subplot(gs[:, 0])

ax.pcolormesh(arr, **pc_kwargs)
fig.add_subplot(gs[0, 1])

ax.pcolormesh(arr, **pc_kwargs)
fig.add_subplot(gs[i, 1])

ax.pcolormesh(arr, **pc_kwargs)
children(fig, fig._layoutbox, printit=False)

2.2.

Intermediate

171

Matplotlib, Release 3.3.0

pOS pOS

ax0007]12

pOS

Ex 000710 ax000714

Height and width ratios are accommodated with the same part of the code with the smaller
axes always constrained to be less in size than the larger.

fig = plt.figure(constrained_layout=True)

gs = gridspec.GridSpec(3, 2, figure=fig,
height_ratios=[1., 0.5, 1.5], width_ratios=[1.2, 0.8])

ax = fig.add_subplot(gs[:2, 0])

im = ax.pcolormesh(arr, *xpc_kwargs)

ax = fig.add_subplot(gs[2, 0])

im = ax.pcolormesh(arr, **pc_kwargs)

ax = fig.add_subplot(gs[0, 1])

im = ax.pcolormesh(arr, **pc_kwargs)

ax = fig.add_subplot(gs[i:, 1])

im = ax.pcolormesh(arr, *xpc_kwargs)

plot_children(fig, fig._layoutbox, printit=False)

172 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

pOS pOS

ax000721

pos

ax000717

pOS

Ex000719 ax000723

Empty gridspec slots

The final piece of the code that has not been explained is what happens if there is an empty
gridspec opening. In that case a fake invisible axes is added and we proceed as before.
The empty gridspec has no decorations, but the axes position in made the same size as the
occupied Axes positions.

This is done at the start of _constrained_layout.do_constrained_layout() (hassubplotspec).

fig = plt.figure(constrained_layout=True)

gs = gridspec.GridSpec(l, 3, figure=fig)

ax = fig.add_subplot(gs[0])

im = ax.pcolormesh(arr, *xpc_kwargs)

ax = fig.add_subplot(gs[-1])

im = ax.pcolormesh(arr, **pc_kwargs)
plot_children(fig, fig._layoutbox, printit=False)
plt.show()

2.2. Intermediate 173

Matplotlib, Release 3.3.0

pOS pes pOS

Ex000726 ax000728

Other notes

The layout is called only once. This is OK if the original layout was pretty close (which it
should be in most cases). However, if the layout changes a lot from the default layout then the
decorators can change size. In particular the x and ytick labels can change. If this happens,
then we should probably call the whole routine twice.

Total running time of the script: (0 minutes 14.779 seconds)

2.2.6 Tight Layout guide

How to use tight-layout to fit plots within your figure cleanly.

tight layout automatically adjusts subplot params so that the subplot(s) fits in to the figure
area. This is an experimental feature and may not work for some cases. It only checks the
extents of ticklabels, axis labels, and titles.

An alternative to tight layout is constrained layout.

Simple Example

In matplotlib, the location of axes (including subplots) are specified in normalized figure coor-
dinates. It can happen that your axis labels or titles (or sometimes even ticklabels) go outside
the figure area, and are thus clipped.

174 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['savefig.facecolor'] = "0.8"

def example_plot(ax, fontsize=12):
ax.plot([1, 2]1)

ax.locator_params(nbins=3)
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

plt.close('all')
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)

Title

2.0 1

1.5

y-label

1.0

T
0.0 0.5 1.0

X-label

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done
by adjusting the subplot params (Move the edge of an axes to make room for tick labels).
Matplotlib v1.1 introduced Figure. tight_layout that does this automatically for you.

fig, ax = plt.subplots()
example_plot(ax, fontsize=24)
plt.tight_layout()

2.2. Intermediate 175

Matplotlib, Release 3.3.0

Title

2.0+

y-label

1.0

T
0.0 0.5 1.0

X-label

Note that matplotiib.pyplot.tight_layout() will only adjust the subplot params when it is
called. In order to perform this adjustment each time the figure is redrawn, you can call fig.
set_tight_layout(True), or, equivalently, set rcParams["figure.autolayout"] (default: False) to
True.

When you have multiple subplots, often you see labels of different axes overlapping each
other.

plt.close('all')

fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(axl)
example_plot(ax2)
example_plot(ax3)
example_plot (ax4)

176 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=figure.autolayout#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Title
2.0
E L
o 1.5 %
ﬂﬁ -
1.0 -
T T T
0.0 TFe 1.0
2.0 - =
E L
o 1.5 %
ﬂﬁ -
1.0 1 | |
0.0 0.5 1.0
x-label

Title
2.0
1.5 -
1.0 -
T T T
0.0 Tothe 1.0
2.0 N 1] 1
1.5 -
1.0 1 | |
0.0 0.5 1.0
x-label

tight_layout () will also adjust spacing between subplots to minimize the overlaps.

fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)

example_plot(axl)
example_plot(ax2)
example_plot (ax3)
example_plot(ax4)
plt.tight_layout()

2.2. Intermediate

177

Matplotlib, Release 3.3.0

Title
2.0
2
o 1.5
=
1.0 | |
0.0 0.5 1.0
x-label
Title
2.0
2
w15+
=
1.(}_ T T T
0.0 0.5 1.0
x-label

Title
2.0
2
o 15 -
=
1.0 | |
0.0 0.5 1.0
x-label
Title
2.0
2
T 15
=
1.(}_ T T T
0.0 0.5 1.0
x-label

tight_layout () can take keyword arguments of pad, w_pad and h_pad. These control the extra
padding around the figure border and between subplots. The pads are specified in fraction

of fontsize.

fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)

example_plot(ax1)
example_plot (ax2)
example_plot(ax3)
example_plot (ax4)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

178

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title
2.0 2.0
2 2
T 15 T 15
= =
1.(} A T T T 1.(} A T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0
2 2
o 15 - o 15 -
= =
1.(} A T T T 1.(} A T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

tight_layout () will work even if the sizes of subplots are different as far as their grid specifi-
cation is compatible. In the example below, axl and ax2 are subplots of a 2x2 grid, while ax3
is of a 1x2 grid.

plt.close('all')
fig = plt.figure()

axl = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)

example_plot (ax1)
example_plot (ax2)
example_plot(ax3)

plt.tight_layout()

2.2. Intermediate 179

Matplotlib, Release 3.3.0

Title Title
2.0
2.0 1
2
o 1.5
=
1.0 1 T T
0.0 0.5 1.0 —
label 8
X-labe o 1.5
.]
Title =
2.0
2
w15+
=
1.0
1.(} A T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

It works with subplots created with subplot2grid(). In general, subplots created from the
gridspec (Customizing Figure Layouts Using GridSpec and Other Functions) will work.

plt.close('all')
fig = plt.figure()

axl = plt.subplot2grid((3, 3), (0, 0))

ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)

ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot (ax1)
example_plot(ax2)
example_plot(ax3)
example_plot (ax4)

plt.tight_layout()

180 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title Title
2.0 2.0
8 8
o 1.5 o 1.5 -
]]
- -
1.0 ; , , 1.0 1 , ,
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 - 2.0
2 2
o 1.5 o 15 -
= =
1.0 1.0
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

Although not thoroughly tested, it seems to work for subplots with aspect != "auto” (e.qg.,
axes with images).

arr = np.arange(100) .reshape((10, 10))

plt.close('all')
fig = plt.figure(figsize=(5, 4))

ax
im

plt.subplot(111)
ax.imshow(arr, interpolation="none"

plt.tight_layout()

2.2. Intermediate 181

Matplotlib, Release 3.3.0

Caveats

* tight_layout () only considers ticklabels, axis labels, and titles. Thus, other artists may
be clipped and also may overlap.

» It assumes that the extra space needed for ticklabels, axis labels, and titles is indepen-
dent of original location of axes. This is often true, but there are rare cases where it is
not.

* pad=0 clips some of the texts by a few pixels. This may be a bug or a limitation of the
current algorithm and it is not clear why it happens. Meanwhile, use of pad at least
larger than 0.3 is recommended.

Use with GridSpec

GridSpec has its own GridSpec. tight_layout method (the pyplot api pyplot.tight_layout also
works).

import matplotlib.gridspec as gridspec

plt.close('all')
fig = plt.figure()

gsl = gridspec.GridSpec(2, 1)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1i[1])

example_plot(axl)

(continues on next page)

182 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

example_plot(ax2)

gsl.tight_layout (fig)

Title
2.0
2
o 1.5 -
<
1.0 1 T T T
0.0 0.5 1.0
x-label
Title
2.0
2
© 15
=
104, | |
0.0 0.5 1.0
x-label

You may provide an optional rect parameter, which specifies the bounding box that the sub-
plots will be fit inside. The coordinates must be in normalized figure coordinates and the
default is (0, 0, 1, 1).

fig = plt.figure()

gsl = gridspec.GridSpec(2, 1)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

gsl.tight_layout(fig, rect=[0, 0, 0.5, 1])

2.2. Intermediate 183

Matplotlib, Release 3.3.0

For example, this can be used for a figure with multiple gridspecs.

fig = plt.figure()

gsl = gridspec.GridSpec(2, 1)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot (ax1)
example_plot (ax2)

gsl.tight_layout(fig, rect=[0, 0, 0.5, 11)
gs2 = gridspec.GridSpec(3, 1)
for ss in gs2:
ax = fig.add_subplot(ss)
example_plot(ax)
ax.set_title("")
ax.set_xlabel("")
ax.set_xlabel("x-label", fontsize=12)

gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5)

We may try to match the top and bottom of two grids ::

(continues on next page)

184

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

top = min(gsl.top, gs2.top)
bottom = max(gsl.bottom, gs2.bottom)

gsl.update(top=top, bottom=bottom)
gs2.update (top=top, bottom=bottom)

plt.show()
Title
2.0 2.0 A
o
T S 151
S 151 <
I
= 1.0 ; , ,
0.0 0.5 1.0
1.0 4 . . 2.0
0.0 0.5 1.0 —
label 8
X-lape © 1.5 -
. I
Title =
2.0 1.0 1 , ,
0.0 0.5 1.0
— 2.0 -
@
S 151 T
< S 151
<
1.0 - T T T 1.0 4 T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

/root/matplotlib/tutorials/intermediate/tight_layout_guide.py:228: UserWarning: This figure
—includes Axes that are not compatible with tight_layout, so results might be incorrect.
gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5)

While this should be mostly good enough, adjusting top and bottom may require adjustment
of hspace also. To update hspace & vspace, we call GridSpec. tight_layout again with updated
rect argument. Note that the rect argument specifies the area including the ticklabels, etc.
Thus, we will increase the bottom (which is 0 for the normal case) by the difference between
the bottom from above and the bottom of each gridspec. Same thing for the top.

fig = plt.gcf()

gsl = gridspec.GridSpec(2, 1)
axl = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1i[1])

(continues on next page)

2.2. Intermediate 185

Matplotlib, Release 3.3.0

(continued from previous page)

example_plot(ax1)
example_plot(ax2)

gsl.tight_layout(fig, rect=[0, 0, 0.5, 1])
gs2 = gridspec.GridSpec(3, 1)

for ss in gs2:
ax = fig.add_subplot(ss)
example_plot (ax)
ax.set_title("")
ax.set_xlabel("")

ax.set_xlabel("x-label", fontsize=12)
gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5)

top = min(gsl.top, gs2.top)
bottom = max(gsl.bottom, gs2.bottom)

gsl.update (top=top, bottom=bottom)
gs2.update (top=top, bottom=bottom)

top = min(gsl.top, gs2.top)
bottom = max(gsl.bottom, gs2.bottom)

gsl.tight_layout(fig, rect=[None, 0 + (bottom-gsl.bottom),
0.5, 1 - (gsl.top-top)])
gs2.tight_layout(fig, rect=[0.5, 0 + (bottom-gs2.bottom),
None, 1 - (gs2.top-top)],
h_pad=0.5)

186 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title 2.0
2.0 —
8
o 1.5 -
:E =
1.5 -
in 1.0 -
:_-.,‘ T T T
0.0 0.5 1.0
2.0
1.0 4 . . _
0.0 0.5 1.0 ©
]
x-label @ 1.5
_ =
Title
2.0 L0+ . :
0.0 0.5 1.0
2.0
2 _
o L5 I
o 1.5 -
= m L
=
1.0 - T T T 1.0 4 T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

/root/matplotlib/tutorials/intermediate/tight_layout_guide.py:268: UserWarning:

—includes Axes that are not compatible with tight_layout, so results might be
gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5)

/root/matplotlib/tutorials/intermediate/tight_layout_guide.py:279: UserWarning:

—includes Axes that are not compatible with tight_layout, so results might be
gsl.tight_layout(fig, rect=[None, O + (bottom-gsl.bottom),

/root/matplotlib/tutorials/intermediate/tight_layout_guide.py:281: UserWarning:

—includes Axes that are not compatible with tight_layout, so results might be
gs2.tight_layout(fig, rect=[0.5, 0 + (bottom-gs2.bottom),

This figure,
incorrect.

This figure,
incorrect.

This figure,
incorrect.

Legends and Annotations

Pre Matplotlib 2.2, legends and annotations were excluded from the bounding box calcula-
tions that decide the layout. Subsequently these artists were added to the calculation, but
sometimes it is undesirable to include them. For instance in this case it might be good to have
the axes shring a bit to make room for the legend:

fig, ax = plt.subplots(figsize=(4, 3))

lines = ax.plot(range(10), label='A simple plot')
ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
fig.tight_layout()

plt.show()

2.2. Intermediate 187

Matplotlib, Release 3.3.0

— A simple plot

However, sometimes this is not desired (quite often when using fig.savefig('outname.png',
bbox_inches='tight')). In order to remove the legend from the bounding box calculation, we
simply set its bounding leg.set_in_layout(False) and the legend will be ignored.

fig, ax = plt.subplots(figsize=(4, 3))

lines = ax.plot(range(10), label='B simple plot')

leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
leg.set_in_layout(False)

fig.tight_layout ()

plt.show()

Use with AxesGridl

While limited, mpl_toolkits.azes_gridl is also supported.

188 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

from mpl_toolkits.axes_gridl import Grid

plt.close('all')

fig = plt.figure()

grid = Grid(fig, rect=111, nrows_ncols=(2, 2),
axes_pad=0.25, label_mode='L',
)

for ax in grid:
example_plot(ax)

ax.title.set_visible(False)

plt.tight_layout()

Title Title
2.0 .
2
o 1.5 - .
=
1.0 - .
T - T T T T
Title
2.0 .
2
© 15 .
=
1.0 - .
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Colorbar

If you create a colorbar with Figure.colorbar, the created colorbar is drawn in a Subplot as
long as the parent axes is also a Subplot, so Figure. tight_layout will work.

plt.close('all')

arr = np.arange(100) .reshape((10, 10))
fig = plt.figure(figsize=(4, 4))

im = plt.imshow(arr, interpolation="none"

(continues on next page)

2.2. Intermediate 189

Matplotlib, Release 3.3.0

(continued from previous page)

plt.colorbar(im)

plt.tight_layout ()

Another option is to use AxesGrid1 toolkit to explicitly create an axes for colorbar.

from mpl_toolkits.axes_gridl import make_axes_locatable

plt.close('all')

arr = np.arange(100) .reshape((10, 10))
fig = plt.figure(figsize=(4, 4))

im = plt.imshow(arr, interpolation="none")

divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3}")

plt.colorbar(im, cax=cax)

plt.tight_layout ()

190 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

MJ

i

=]

0
80
60
40
20
T T T T T D
0 2 4 6 8

Total running time of the script: (0 minutes 6.039 seconds)

2.2.7 origin and extent in imshow

imshow() allows you to render an image (either a 2D array which will be color-mapped (based
on norm and cmap) or a 3D RGB(A) array which will be used as-is) to a rectangular region in
dataspace. The orientation of the image in the final rendering is controlled by the origin and
extent kwargs (and attributes on the resulting AzesImage instance) and the data limits of the
axes.

The extent kwarg controls the bounding box in data coordinates that the image will fill spec-
ified as (left, right, bottom, top) in data coordinates, the origin kwarg controls how the
image fills that bounding box, and the orientation in the final rendered image is also affected
by the axes limits.

Hint: Most of the code below is used for adding labels and informative text to the plots. The
described effects of origin and extent can be seen in the plots without the need to follow all
code details.

For a quick understanding, you may want to skip the code details below and directly continue
with the discussion of the results.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

(continues on next page)

2.2. Intermediate 191

Matplotlib, Release 3.3.0

(continued from previous page)

def

def

def

def

def

index_to_coordinate(index, extent, origin):
"""Return the pizel center of an index."""
left, right, bottom, top = extent

hshift = 0.5 * np.sign(right - left)
left, right = left + hshift, right - hshift
vshift = 0.5 * np.sign(top - bottom)
bottom, top = bottom + vshift, top - vshift

if origin == 'upper':
bottom, top = top, bottom

return {
"[0, 0]": (left, bottom),
"[M', 0]": (left, top),
"[0, N']": (right, bottom),
"[M', N']": (right, top),

} [index]

get_index_label_pos(index, extent, origin, inverted_xindex):
mnn

Return the desired postition and horizontal alignment of an index label.
mmnn
if extent is None:
extent = lookup_extent(origin)
left, right, bottom, top = extent
X, y = index_to_coordinate(index, extent, origin)

is_x0 = index[-2:] == "0]"

halign = 'left' if is_x0 ~ inverted_xindex else 'right'
hshift = 0.5 * np.sign(left - right)

x += hshift * (1 if is_x0 else -1)

return x, y, halign

get_color(index, data, cmap):
"""Return the data color of an index.
val = {

"[0, 0]": datalO, 0],

"[0, N']": datal[O0, -1],

"[M', 0]": datal[-1, 0],

"[M', N']": data[-1, -1],
} [index]
return cmap(val / data.max())

wmn

lookup_extent (origin):
"""Return extent for label positioning when not given explicitly."""
if origin == 'lower':
return (-0.5, 6.5, -0.5, 5.5)
else:
return (-0.5, 6.5, 5.5, -0.5)

set_extent_None_text(ax):

(continues on next page)

192

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

def

def

ax.text(3, 2.5, 'equals\nextent=None', size='large',
ha='center', va='center', color='w')

plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim):
"mihctually run " imshow() T and add extent and index labels.
im = ax.imshow(data, origin=origin, extent=extent)

wmn

extent labels (left, right, bottom, top)
left, right, bottom, top = im.get_extent()
if x1lim is None or top > bottom:

upper_string, lower_string = 'top', 'bottom'
else:
upper_string, lower_string = 'bottom', 'top'
if ylim is None or left < right:
port_string, starboard_string = 'left', 'right'
inverted_xindex = False
else:

port_string, starboard_string = 'right', 'left'
inverted_xindex = True
bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"}
ann_kwargs = {'xycoords': 'axes fraction',
'textcoords': 'offset points',
'bbox': bbox_kwargs}
ax.annotate(upper_string, xy=(.5, 1), xytext=(0, -1),
ha='center', va='top', **ann_kwargs)
ax.annotate(lower_string, xy=(.5, 0), xytext=(0, 1),
ha='center', va='bottom', **ann_kwargs)
ax.annotate(port_string, xy=(0, .5), xytext=(1, 0),
ha='left', va='center', rotation=90,
**ann_kwargs)
ax.annotate(starboard_string, xy=(1, .5), xytext=(-1, 0),
ha='right', va='center', rotation=-90,
**ann_kwargs)
ax.set_title('origin: {origin}'.format(origin=origin))

index labels
for index in ["[O, O]", "[O, N']", "[M', O]", "[M', N']"]:
tx, ty, halign = get_index_label_pos(index, extent, origin,
inverted_xindex)
facecolor = get_color(index, data, im.get_cmap())
ax.text(tx, ty, index, color='white', ha=halign, va='center',

bbox={'boxstyle': 'square', 'facecolor': facecolor})
if xlim:
ax.set_xlim(*x1lim)
if ylim:

ax.set_ylim(*ylim)

generate_imshow_demo_grid(extents, xlim=None, ylim=None):
N = len(extents)

fig = plt.figure(tight_layout=True)
fig.set_size_inches(6, N * (11.25) / 5)

gs = GridSpec(N, 5, figure=fig)

columns = {'label': [fig.add_subplot(gs[j, 0]) for j in range(N)],

(continues on next page)

2.2.

Intermediate

193

Matplotlib, Release 3.3.0

(continued from previous page)

'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(N)],
'lower': [fig.add_subplot(gs[j, 3:5]) for j in range(N)]}
X, y = np.ogrid[0:6, 0:7]
data = x + y

for origin in ['upper', 'lower']:
for ax, extent in zip(columns[origin], extents):
plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim)

columns|['label'] [0].set_title('extent=")
for ax, extent in zip(columns['label'], extents):
if extent is Nome:
text = 'None'
else:
left, right, bottom, top = extent
text = (f'left: {left:0.1fNnright: {right:0.1fFNn'
f'bottom: {bottom:0.1f \ntop: {top:0.1fFNn')
ax.text(l., .5, text, transform=ax.transAxes, ha='right', va='center')
ax.axis('off")
return columns

Default extent

First, let’s have a look at the default extent=None

generate_imshow_demo_grid(extents=[None])

extent= origin: upper origin: lower

Out:

{'label': [<AxesSubplot:title={'center':'extent='}>], 'upper': [<AxesSubplot:title={'center':
< 'origin: upper'}>], 'lower': [<AxesSubplot:title={'center':'origin: lower'}>]}

Generally, for an array of shape (M, N), the first index runs along the vertical, the second
index runs along the horizontal. The pixel centers are at integer positions ranging from 0 to
N' = N - 1 horizontally and from 0 toM' = M - 1 vertically. origin determines how to the data
is filled in the bounding box.

For origin="'lower':

e [0, O] is at (left, bottom)

194 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

e [M’, 0] is at (left, top)
* [0, N’] is at (right, bottom)
» [M’, N’] is at (right, top)

origin="'upper' reverses the vertical axes direction and filling:
* [0, 0] is at (left, top)
* [M’, 0] is at (left, bottom)
* [0, N’] is at (right, top)
* [M’, N’] is at (right, bottom)

In summary, the position of the [0, 0] index as well as the extent are influenced by origin:

origin [0, 0] position | extent
upper | top left (-0.5, numcols-0.5, numrows-0.5, -0.5)
lower | bottom left | (-0.5, numcols-0.5, -0.5, numrows-0.5)

The default value of origin is set by rcParams["image.origin"] (default: 'upper') which defaults
to 'upper' to match the matrix indexing conventions in math and computer graphics image

indexing conventions.

Explicit extent

By setting extent we define the coordinates of the image area. The underlying image data is
interpolated/resampled to fill that area.

If the axes is set to autoscale, then the view limits of the axes are set to match the extent which
ensures that the coordinate set by (1eft, bottom) is at the bottom left of the axes! However,
this may invert the axis so they do not increase in the 'natural’ direction.

extents =

columns =

[(-0.5, 6.5, -0.5, 5.5),
(-0.5, 6.5, 5.5, -0.5),
(6.5, -0.5, -0.5, 5.5),
(6.5, -0.5, 5.5, -0.5)]

generate_imshow_demo_grid(extents)
set_extent_None_text (columns['upper'][1])
set_extent_None_text(columns['lower'][0])

2.2. Intermediate

195

../../tutorials/introductory/customizing.html?highlight=image.origin#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

extent=

left: -0.5
right: 6.5
bottom: -0.5
top: 5.5

left: -0.5
right: 6.5
bottom: 5.5
top: -0.5

left: 6.5
right: -0.5
bottom: -0.5
top: 5.5

left: 6.5
right: -0.5
bottom: 5.5
top: -0.5

origin: upper origin: lower

[M', O]

equals E
extent=None E

[0, N']

equals
extent=None

196

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Explicit extent and axes limits

If we fix the axes limits by explicitly setting set_zlim / set_ylim, we force a certain size and
orientation of the axes. This can decouple the ’left-right’ and 'top-bottom’ sense of the image
from the orientation on the screen.

In the example below we have chosen the limits slightly larger than the extent (note the white
areas within the Axes).

While we keep the extents as in the examples before, the coordinate (0, 0) is now explicitly
put at the bottom left and values increase to up and to the right (from the viewer point of
view). We can see that:

* The coordinate (left, bottom) anchors the image which then fills the box going towards
the (right, top) point in data space.

* The first column is always closest to the ’left’.
» origin controls if the first row is closest to 'top’ or 'bottom’.
* The image may be inverted along either direction.

* The ’left-right’ and ’top-bottom’ sense of the image may be uncoupled from the orienta-
tion on the screen.

generate_imshow_demo_grid(extents=[None] + extents,
xlim=(-2, 8), ylim=(-1, 6))

plt.show()

2.2. Intermediate 197

Matplotlib, Release 3.3.0

extent=

None

left: -0.5
right: 6.5
bottom: -0.5
top: 5.5

left: -0.5
right: 6.5
bottom: 5.5
top: -0.5

left: 6.5
right: -0.5
bottom: -0.5
top: 5.5

left: 6.5
right: -0.5
bottom: 5.5
top: -0.5

origin: upper

origin: lower

tto

M
0D

top

(3ybu)

top

(3ybu)

T - T

0.0 2.5 5.0

origin: upper

7.5

botto
T T T
0.0 2.5 5.0

origin: lower

7.5

top

otto

(3ybu)

top

botto

(3ysu]

0.0 2.5 5.0

origin: upper

7.5

00 25 50

origin: lower

otto

(3ybu)

7.5

botto

(3ybu]

0.0 2.5 5.0

origin: upper

7.5

0.0 2.5 5.0

origin: lower

7.5

top 6 top
44 4 4
£ L
= =
.18 .
0 0 A
tto ottom
T T T T T T T T
00 25 50 75 00 25 50 715
origin: upper origin: lower
6 tto 6 ottom
4+ 4 4
L -
i £
.18 .8
01 0 A

198

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Total running time of the script: (0 minutes 2.489 seconds)

2.3 Advanced

These tutorials cover advanced topics for experienced Matplotlib users and developers.

2.3.1 Blitting tutorial

’Blitting’ is a standard technique in raster graphics that, in the context of Matplotlib, can be
used to (drastically) improve performance of interactive figures. For example, the animation
and widgets modules use blitting internally. Here, we demonstrate how to implement your
own blitting, outside of these classes.

The source of the performance gains is simply not re-doing work we do not have to. If the
limits of an Axes have not changed, then there is no need to re-draw all of the ticks and
tick-labels (particularly because text is one of the more expensive things to render).

The procedure to save our work is roughly:
» draw the figure, but exclude any artists marked as ’animated’
* save a copy of the RBGA buffer
In the future, to update the ‘animated’ artists we
* restore our copy of the RGBA buffer
» redraw only the animated artists
* show the resulting image on the screen

thus saving us from having to re-draw everything which is _not animated. One consequence
of this procedure is that your animated artists are always drawn at a higher z-order than the
static artists.

Not all backends support blitting. You can check if a given canvas does via the
FigureCanvasBase. supports_blit property.

Warning: This code does not work with the OSX backend (but does work with other GUI
backends on mac).

Minimal example

We can use the FigureCanvasdgg methods copy_from_bboz and restore_region in conjunction
with setting animated=True on our artist to implement a minimal example that uses blitting to
accelerate rendering

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2 * np.pi, 100)

fig, ax = plt.subplots()

(continues on next page)

2.3. Advanced 199

https://en.wikipedia.org/wiki/Bit_blit

Matplotlib, Release 3.3.0

(continued from previous page)

animated=True tells matplotlidb to only draw the artist when we
explicitly request it
(In,) = ax.plot(x, np.sin(x), animated=True)

make sure the window s raised, but the script keeps going
plt.show(block=False)

stop to admire our empty window axes and ensure it is rendered at
least once.

We need to fully draw the figure at its final size on the screen

before we continue on so that

a) we have the correctly sized and drawn background to grab

b) we have a cached renderer so that ~“az.draw_artist’ " works
so we spin the event loop to let the backend process any pending operations
plt.pause(0.1)

H oW oW R R R R R

get copy of entire figure (everything inside fig.bboz) sans animated artist
bg = fig.canvas.copy_from_bbox(fig.bbox)

draw the animated artist, this uses a cached renderer

ax.draw_artist(1ln)

show the result to the screen, this pushes the updated RGBA buffer from the
renderer to the GUI framework so you can see it

fig.canvas.blit(fig.bbox)

for j in range(100):
reset the background back in the canvas state, screen unchanged
fig.canvas.restore_region(bg)
update the artist, neither the canvas state nor the screen have changed
1n.set_ydata(np.sin(x + (j / 100) * np.pi))
re-render the artist, updating the canvas state, but not the screen
ax.draw_artist(1n)
copy the image to the GUI state, but screen might not changed yet
fig.canvas.blit(fig.bbox)
flush any pending GUI events, re-painting the screen if needed
fig.canvas.flush_events()
you can put a pause in if you want to slow things down
plt.pause(.1)

200

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.00 +

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

This example works and shows a simple animation, however because we are only grabbing
the background once, if the size of the figure in pixels changes (due to either the size or dpi of
the figure changing) , the background will be invalid and result in incorrect (but sometimes
cool looking!) images. There is also a global variable and a fair amount of boiler plate which
suggests we should wrap this in a class.

Class-based example

We can use a class to encapsulate the boilerplate logic and state of restoring the background,
drawing the artists, and then blitting the result to the screen. Additionally, we can use the
'draw_event' callback to capture a new background whenever a full re-draw happens to handle
resizes correctly.

class BlitManager:
def __init__(self, canvas, animated_artists=()):

mmnn

Parameters

canvas : FigureCanvasAgg
The canvas to work with, thtis only works for sub-classes of the Agg
canvas which have the “~FigureCanvasAgg.copy_from_bboxz and
‘~FigureCanvasAgg.restore_region methods.

animated_artists : Iterable[Artist]

(continues on next page)

2.3. Advanced 201

Matplotlib, Release 3.3.0

(continued from previous page)

def

def

def

def

List of the artists to manage
mimn
self.canvas = canvas
self._bg = None
self._artists = []

for a in animated_artists:
self.add_artist(a)
grab the background on every draw
self.cid = canvas.mpl_connect("draw_event", self.on_draw)

on_draw(self, event):
"""Callback to register with 'draw_event'."""
cv = self.canvas
if event is not None:

if event.canvas != cv:

raise RuntimeError

self._bg = cv.copy_from_bbox(cv.figure.bbox)
self._draw_animated()

add_artist(self, art):

mwmn

Add an artist to be managed.

Parameters

The artist to be added. Will be set to 'animated' (just
to be safe). *art* must be in the figure assoctated with
the canvas this class is managing.

mwmn

if art.figure != self.canvas.figure:
raise RuntimeError

art.set_animated(True)

self._artists.append(art)

_draw_animated(self):

"""Draw all of the animated artists."""

fig = self.canvas.figure

for a in self._artists:
fig.draw_artist(a)

update (self):
"""Update the screen with animated artists."""
cv = self.canvas
fig = cv.figure
paranoia in case we missed the draw event,
if self._bg is None:
self.on_draw(None)
else:
restore the background
cv.restore_region(self._bg)
draw all of the animated artists
self._draw_animated()

(continues on next page)

202

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

update the GUI state

cv.blit(fig.bbox)
let the GUI event loop process anything it has to do
cv.flush_events()

Here is how we would use our class. This is a slightly more complicated example than the
first case as we add a text frame counter as well.

make a new figure
fig, ax = plt.subplots()
add a line
(In,) = ax.plot(x, np.sin(x), animated=True)
add a frame number
fr_number = ax.annotate(
non s
0, 1,
xycoords="axes fraction",
xytext=(10, -10),
textcoords="offset points",
ha="left",
va="top",
animated=True,

)
bm = BlitManager(fig.canvas, [ln, fr_number])

make sure our window %S on the screen and drawn
plt.show(block=False)

plt.pause(.1)

for j in range(100):
update the artists
In.set_ydata(np.sin(x + (j / 100) * np.pi))
fr_number.set_text("frame: " format (j=j))
tell the blitting manager to do it's thing
bm.update ()

2.3. Advanced 203

Matplotlib, Release 3.3.0

1.00 4 frame: 99

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

This class does not depend on pyplot and is suitable to embed into larger GUI application.

Total running time of the script: (0 minutes 1.113 seconds)

2.3.2 Path Tutorial

Defining paths in your Matplotlib visualization.

The object underlying all of the matplotiib.patches objects is the Path, which supports the
standard set of moveto, lineto, curveto commands to draw simple and compound outlines
consisting of line segments and splines. The Path is instantiated with a (N, 2) array of (%, y)
vertices, and a N-length array of path codes. For example to draw the unit rectangle from (0,
0) to (1, 1), we could use this code:

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(0., 0.), # dgnored

(continues on next page)

204 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

codes = [
Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,

]

path = Path(verts, codes)

fig, ax = plt.subplots()

patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)

ax.set_x1im(-2, 2)

ax.set_ylim(-2, 2)

plt.show()

2.0

1.5~

1.0+

0.5 A

0.0

—0.5 4

1.0

1.5 4

_2.[} T T T T T T T
—-2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5 2.0

The following path codes are recognized

2.3. Advanced 205

Matplotlib, Release 3.3.0

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required
and ignored).

MOVETO| 1 Pick up the pen and move to the given vertex.

LINETO| 1 Draw a line from the current position to the given vertex.

CURVE3| 2: 1 control point, | Draw a quadratic Bézier curve from the current position, with
1 end point the given control point, to the given end point.

CURVE4| 3: 2 control | Draw a cubic Bézier curve from the current position, with the
points, 1 end | given control points, to the given end point.
point

CLOSEPQLY (the point is ig- | Draw a line segment to the start point of the current polyline.
nored)

Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3
is a bézier curve with one control point and one end point, and CURVE4 has three vertices for
the two control points and the end point. The example below shows a CURVE4 Bézier spline -
the bézier curve will be contained in the convex hull of the start point, the two control points,
and the end point

verts = [

(0., 0.), # PO
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]

codes = [
Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,

]

path = Path(verts, codes)

fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='none', lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, 'x—-', lw=2, color='black', ms=10)

ax.text(-0.05, -0.05, 'PO")
ax.text(0.15, 1.05, 'P1")
ax.text(1.05, 0.85, 'P2")
ax.text(0.85, -0.05, 'P3')

ax.set_x1im(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

206 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 3.3.0

1.0+

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are imple-
mented with simple path. Plotting functions like hist () and bar(), which create a number
of primitives, e.g., a bunch of Rectangles, can usually be implemented more efficiently using
a compound path. The reason bar creates a list of rectangles and not a compound path is
largely historical: the Path code is comparatively new and bar predates it. While we could
change it now, it would break old code, so here we will cover how to create compound paths,
replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, e.g., you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar:
the rectangle width is the bin width and the rectangle height is the number of datapoints
in that bin. First we’ll create some random normally distributed data and compute the his-
togram. Because numpy returns the bin edges and not centers, the length of bins is 1 greater
than the length of n in the example below:

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We’ll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is
len(n), where n is the array of counts for each histogram bar:

2.3. Advanced 207

Matplotlib, Release 3.3.0

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])

right = np.array(bins[1:])

bottom = np.zeros(len(left))

top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO
and CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO,
3 for the LINETO, and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the
closepoly is ignored but we still need it to keep the codes aligned with the vertices:

nverts = nrectsx(1+3+1)

verts = np.zeros((averts, 2))

codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO

codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left

verts[0::5, 1] = bottom
verts[1::5, 0] = left

verts[1::5, 1] = top

verts[2::5, 0] = right
verts[2::5, 1] = top

verts[3::5, 0] = right
verts[3::5, 1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)

patch = patches.PathPatch(barpath, facecolor='green',
edgecolor='yellow', alpha=0.5)

ax.add_patch(patch)

import numpy as np
import matplotlib.patches as patches
import matplotlib.path as path

fig, ax = plt.subplots()
Fizing random state for reproducibility
np.random.seed (19680801)

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])

right = np.array(bins[1:])

bottom = np.zeros(len(left))

top = bottom + n

nrects = len(left)

nverts = nrects*(1+3+1)

verts = np.zeros((nverts, 2))

codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO

codes[4::5] = path.Path.CLOSEPOLY

verts[0::5, 0] = left

(continues on next page)

208 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

verts[0::
verts[1::
verts[1::
verts[2::
verts[2::
verts[3::
verts[3:

barpath = path.

, 11
, 0]
, 11
, 0]
, 11
, 0]
:5, 1]

= bottom
= left

= top

= right
= top

= right
= bottom

Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor='green',

ax.add_patch(patch)

edgecolor="'yellow', alpha=0.5)

ax.set_x1im(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())

plt.show()

35 A

25

20 4

15 +

10 4

2.3.3 Path effects guide

Defining paths that objects follow on a canvas.

Matplotlib’s patheffects module provides functionality to apply a multiple draw stage to any

2.3. Advanced

209

Matplotlib, Release 3.3.0

Artist which can be rendered via a path.Path.

Artists which can have a path effect applied to them include patches.Patch, lines.Line2D,
collections.Collection and even tezt.Text. Each artist’s path effects can be controlled via
the Artist.set_path_effects method, which takes an iterable of AbstractPathEffect instances.

The simplest path effect is the vormal effect, which simply draws the artist without any effect:

import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects

fig = plt.figure(figsize=(5, 1.5))
text = fig.text(0.5, 0.5, 'Hello path effects world!\nThis is the normal '
'path effect.\nPretty dull, huh?',
ha='center', va='center', size=20)
text.set_path_effects([path_effects.Normal()])
plt.show()

Hello path effects world!
This is the normal path effect.
Pretty dull, huh?

Whilst the plot doesn’t look any different to what you would expect without any path effects,
the drawing of the text has now been changed to use the path effects framework, opening up
the possibilities for more interesting examples.

Adding a shadow

A far more interesting path effect than Vormal is the drop-shadow, which we can apply to any
of our path based artists. The classes SimplePatchShadow and SimpleLineShadow do precisely
this by drawing either a filled patch or a line patch below the original artist:

import matplotlib.patheffects as path_effects

text = plt.text(0.5, 0.5, 'Hello path effects world!',
path_effects=[path_effects.withSimplePatchShadow()])

plt.plot ([0, 3, 2, 5], linewidth=5, color='blue',
path_effects=[path_effects.SimpleLineShadow(),
path_effects.Normal()])
plt.show()

210 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Hello, path effects world!

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Notice the two approaches to setting the path effects in this example. The first uses the with*
classes to include the desired functionality automatically followed with the “normal” effect,
whereas the latter explicitly defines the two path effects to draw.

Making an artist stand out

One nice way of making artists visually stand out is to draw an outline in a bold color below
the actual artist. The Stroke path effect makes this a relatively simple task:

fig = plt.figure(figsize=(7, 1))
text = fig.text(0.5, 0.5, 'This text stands out because of\n'
'its black border.', color='white',
ha='center', va='center', size=30)
text.set_path_effects([path_effects.Stroke(linewidth=3, foreground='black'),
path_effects.Normal()])
plt.show()

This stands out because ofF
its black border,

2.3. Advanced 211

Matplotlib, Release 3.3.0

It is important to note that this effect only works because we have drawn the text path twice;
once with a thick black line, and then once with the original text path on top.

You may have noticed that the keywords to Stroke and SimplePatchShadow and SimpleLineShadow
are not the usual Artist keywords (facecolor edgecolor, etc.). This is because with these
path effects we are operating at lower level of Matplotlib. In fact, the keywords which are
accepted are those for a matplotlib.backend_bases.GraphicsConteztBase instance, which have
been designed for making it easy to create new backends - and not for its user interface.

Greater control of the path effect artist

As already mentioned, some of the path effects operate at a lower level than most users
will be used to, meaning that setting keywords such as facecolor and edgecolor raise an
AttributeError. Luckily there is a generic PathPatchEffect path effect which creates a patches.
PathPatch class with the original path. The keywords to this effect are identical to those of
patches.PathPatch:

fig = plt.figure(figsize=(8, 1))
t = fig.text(0.02, 0.5, 'Hatch shadow', fontsize=75, weight=1000, va='center')
t.set_path_effects([
path_effects.PathPatchEffect(
offset=(4, -4), hatch='xxxx', facecolor='gray'),
path_effects.PathPatchEffect(
edgecolor='white', linewidth=1.1, facecolor='black')])
plt.show()

Hatch shadov

2.3.4 Transformations Tutorial

Like any graphics packages, Matplotlib is built on top of a transformation framework to easily
move between coordinate systems, the userland data coordinate system, the axes coordinate
system, the figure coordinate system, and the display coordinate system. In 95% of your
plotting, you won’t need to think about this, as it happens under the hood, but as you push
the limits of custom figure generation, it helps to have an understanding of these objects so
you can reuse the existing transformations Matplotlib makes available to you, or create your
own (see matplotlib.transforms). The table below summarizes the some useful coordinate
systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Azes instance, and fig
is a Figure instance.

212 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Coordi- | Transformation object Description
nates
“data” | ax.transData The coordinate system for the data, controlled by xlim and
ylim.
“axes” | ax.transAxes The coordinate system of the 4zes; (0, 0) is bottom left of
the axes, and (1, 1) is top right of the axes.
“fig- fig.transFigure The coordinate system of the Figure; (0, 0) is bottom left of
ure” the figure, and (1, 1) is top right of the figure.
"figuret fig.dpi_scale_trans | The coordinate system of the Figure in inches; (0, 0) is bot-
inches’ tom left of the figure, and (width, height) is the top right of
the figure in inches.
"dis- None, or | The pixel coordinate system of the display window; (0, 0) is
play” | IdentityTransform() | bottom left of the window, and (width, height) is top right
of the display window in pixels.
”xaxis”} ax. Blended coordinate systems; use data coordinates on one
“yaxis”| get_xaxis_transform(),of the axis and axes coordinates on the other.
ax.
get_yaxis_transform(

All of the transformation objects in the table above take inputs in their coordinate system,
and transform the input to the display coordinate system. That is why the display coordinate
system has None for the Transformation Object column - it already is in display coordinates.
The transformations also know how to invert themselves, to go from display back to the native
coordinate system. This is particularly useful when processing events from the user interface,
which typically occur in display space, and you want to know where the mouse click or key-
press occurred in your data coordinate system.

Note that specifying objects in display coordinates will change their location if the dpi of
the figure changes. This can cause confusion when printing or changing screen resolu-
tion, because the object can change location and size. Therefore it is most common for
artists placed in an axes or figure to have their transform set to something other than the
IdentityTransform(); the default when an artist is placed on an axes using add_artist is for
the transform to be ax.transData.

Data coordinates

Let’s start with the most commonly used coordinate, the data coordinate system. Whenever
you add data to the axes, Matplotlib updates the datalimits, most commonly updated with the
set_zlim() and set_ylim() methods. For example, in the figure below, the data limits stretch
from 0 to 10 on the x-axis, and -1 to 1 on the y-axis.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_x1im(0, 10)
ax.set_ylim(-1, 1)

(continues on next page)

2.3. Advanced 213

Matplotlib, Release 3.3.0

(continued from previous page)

plt.show()

1.00

0.75 4

0.50

0.25

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00

You can use the ax.transData instance to transform from your data to your display coordinate
system, either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class 'matplotlib.transforms.CompositeGenericTransform'>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247. 1)

In [16]: ax.tramsData.transform([(5, 0), (1, 2)]1)
OQut[16]:
array([[335.175, 247. 1,

[132.435, 642.2 11)

You can use the inverted() method to create a transform which will take you from display to
data coordinates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42] : <class 'matplotlib.transforms.CompositeGenericTransform'>

(continues on next page)

214 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.1)

Ifyour are typing along with this tutorial, the exact values of the display coordinates may differ
if you have a different window size or dpi setting. Likewise, in the figure below, the display
labeled points are probably not the same as in the ipython session because the documentation
figure size defaults are different.

X
y

np.arange(0, 10, 0.005)
np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_x1im(0, 10)
ax.set_ylim(-1, 1)

xdata, ydata = 5, O
xdisplay, ydisplay = ax.transData.transform((xdata, ydata))

bbox = dict(boxstyle="round", fc="0.8")

arrowprops = dict(
arrowstyle="->",
connectionstyle="angle,angleA=0,angleB=90,rad=10")

offset = 72

ax.annotate('data = (s)" % (xdata, ydata),
(xdata, ydata), xytext=(-2+offset, offset), textcoords='offset points',
bbox=bbox, arrowprops=arrowprops)

disp = ax.annotate('display = (s)" % (xdisplay, ydisplay),
(xdisplay, ydisplay), xytext=(0.5xoffset, -offset),
xycoords='figure pixels',
textcoords='offset points',
bbox=bbox, arrowprops=arrowprops)

plt.show()

2.3. Advanced 215

Matplotlib, Release 3.3.0

1.00

0.75 4

[data = (5.0, u.u}]—\

0.50

0.25

0.00 +

—0.25 +

—0.50 - —(display = (328.0, 237.6))

—0.75 +

—1.00

Note: If you run the source code in the example above in a GUI backend, you may also
find that the two arrows for the data and display annotations do not point to exactly the
same point. This is because the display point was computed before the figure was displayed,
and the GUI backend may slightly resize the figure when it is created. The effect is more
pronounced if you resize the figure yourself. This is one good reason why you rarely want to
work in display space, but you can connect to the 'on_draw' Event to update figure coordinates
on figure draws; see Event handling and picking.

When you change the x or y limits of your axes, the data limits are updated so the transfor-
mation yields a new display point. Note that when we just change the ylim, only the y-display
coordinate is altered, and when we change the xlim too, both are altered. More on this later
when we talk about the Bboz.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247. 1)

In [55]: ax.set_ylim(-1, 2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out [56]: array([335.175 , 181.13333333])

In [57]: ax.set_x1im(10, 20)

(continues on next page)

216 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

Out [57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
, 181.13333333])

Out[58]: array([-171.675

Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system.
Here the point (0, 0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and
(1.0, 1.0) is the top right. You can also refer to points outside the range, so (-0.1, 1.1) is to
the left and above your axes. This coordinate system is extremely useful when placing text
in your axes, because you often want a text bubble in a fixed, location, e.g., the upper left of
the axes pane, and have that location remain fixed when you pan or zoom. Here is a simple
example that creates four panels and labels them 'A’, 'B’, ’C’, ‘D’ as you often see in journals.

fig = plt.figure()

for i, label in enumerate(('A',
ax = fig.add_subplot(2, 2, i+1)

'B‘,

IC‘,

lD‘)):

ax.text(0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight='bold', va='top')

plt.show()
1.0 1.0
A B
0.8 - 0.8 -
0.6 0.6
0.4 0.4
0.2 0.2
0-0 T T T T 0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0 1.0
C D
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0-0 T T T T 0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

2.3. Advanced

217

Matplotlib, Release 3.3.0

You can also make lines or patches in the axes coordinate system, but this is less useful in
my experience than using ax.transAxes for placing text. Nonetheless, here is a silly example
which plots some random dots in data space, and overlays a semi-transparent Circle centered
in the middle of the axes with a radius one quarter of the axes - if your axes does not preserve
aspect ratio (see set_aspect()), this will look like an ellipse. Use the pan/zoom tool to move
around, or manually change the data xlim and ylim, and you will see the data move, but the
circle will remain fixed because it is not in data coordinates and will always remain at the
center of the axes.

fig, ax = plt.subplots()
X, y = 10*np.random.rand(2, 1000)
ax.plot(x, y, 'go', alpha=0.2) # plot some data in data coordinates

circ = mpatches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor='blue', alpha=0.75)

ax.add_patch(circ)

plt.show()

10 1 ®,

Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely
useful, for example to create a horizontal span which highlights some region of the y-data
but spans across the x-axis regardless of the data limits, pan or zoom level, etc. In fact these
blended lines and spans are so useful, we have built in functions to make them easy to plot

218 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(see azhline(), azvline(), azhspan(), azvspan()) but for didactic purposes we will implement
the horizontal span here using a blended transformation. This trick only works for separable
transformations, like you see in normal Cartesian coordinate systems, but not on inseparable

transformations like the PolarTransform.

import matplotlib.transforms as transforms

fig, ax = plt.subplots()
x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r'$\sigma=1 \/ \dots \/ \sigma=2$', fontsize=16)

the x© coords of this transformation are data, and the y coord are azxes
trans = transforms.blended_transform_factory(

ax.transData, ax.transAxes)
highlight the 1..2 stddev region with a span.

We want z to be in data coordinates and y to span from 0..1 in azes coords.

rect = mpatches.Rectangle((1, 0), width=1, height=1, transform=trans,
color='yellow', alpha=0.5)
ax.add_patch(rect)

plt.show()

o=1...0=2

80 4

60

20 +

Note: The blended transformations where x is in data coords and y in axes coordinates is

2.3. Advanced

219

Matplotlib, Release 3.3.0

so useful that we have helper methods to return the versions Matplotlib uses internally for
drawing ticks, ticklabels, etc. The methods are matplotlib.azes.Azes.get_zazis_transform()
and matplotlib.azes.Azes.get_yazis_transform(). So in the example above, the call to
blended_transform_factory() can be replaced by get_xaxis_transform:

trans = ax.get_xaxis_transform()

Plotting in physical coordinates

Sometimes we want an object to be a certain physical size on the plot. Here we draw the same
circle as above, but in physical coordinates. If done interactively, you can see that changing
the size of the figure does not change the offset of the circle from the lower-left corner, does
not change its size, and the circle remains a circle regardless of the aspect ratio of the axes.

fig, ax = plt.subplots(figsize=(5, 4))

X, y = 10*np.random.rand(2, 1000)

ax.plot(x, y*10., 'go', alpha=0.2) # plot some data in data coordinates

add a circle in fized-coordinates

circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,
facecolor='blue', alpha=0.75)

ax.add_patch(circ)

plt.show()

100

80

60 1

40 A

20

If we change the figure size, the circle does not change its absolute position and is cropped.

fig, ax = plt.subplots(figsize=(7, 2))
X, y = 10*np.random.rand(2, 1000)

(continues on next page)

220 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

ax.plot(x, y*10., 'go', alpha=0.2) # plot some data in data coordinates

add a circle in fized-coordinates

circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,
facecolor='blue', alpha=0.75)

ax.add_patch(circ)

plt.show()
100 ~ B P
®g o
75 - ‘ e e *""r_rig 4 ¢
i & u? 3 o
50 4 . o g{_, { .
T g S ee
25 1 * . 3 e
b o » . » "
0 g @ ¥
T T T T T T
0 2 4 6 8 10

Another use is putting a patch with a set physical dimension around a data point on the axes.
Here we add together two transforms. The first sets the scaling of how large the ellipse
should be and the second sets its position. The ellipse is then placed at the origin, and then
we use the helper transform ScaledTransiation to move it to the right place in the ax.transData
coordinate system. This helper is instantiated with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yt are the translation offsets, and scale trans is a transformation which scales
xt and yt at transformation time before applying the offsets.

Note the use of the plus operator on the transforms below. This code says: first apply the scale
transformation fig.dpi_scale_trans to make the ellipse the proper size, but still centered at
(0, 0), and then translate the data to xdata[0] and ydata[0] in data space.

In interactive use, the ellipse stays the same size even if the axes limits are changed via zoom.

fig, ax = plt.subplots()

xdata, ydata = (0.2, 0.7), (0.5, 0.5)
ax.plot(xdata, ydata, "o")
ax.set_x1im((0, 1))

trans = (fig.dpi_scale_trans +
transforms.ScaledTranslation(xdata[0], ydata[0], ax.transData))

plot an ellipse around the point that is 150 = 130 points in diameter...
circle = mpatches.Ellipse((0, 0), 150/72, 130/72, angle=40,
fill=None, transform=trans)
ax.add_patch(circle)
plt.show()

2.3. Advanced 221

Matplotlib, Release 3.3.0

0.52 -
0.51 -
0.50 - ° °
0.49 -
0.48 -
T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Note: The order of transformation matters. Here the ellipse is given the right dimensions
in display space first and then moved in data space to the correct spot. If we had done
the ScaledTranslation first, then xdata[0] and ydata[0] would first be transformed to display
coordinates ([358.4 475.2] on a 200-dpi monitor) and then those coordinates would be scaled
by fig.dpi_scale_trans pushing the center of the ellipse well off the screen (i.e. [71680.
95040.1).

Using offset transforms to create a shadow effect

Another use of ScaledTranslationis to create a new transformation that is offset from another
transformation, e.g., to place one object shifted a bit relative to another object. Typically
you want the shift to be in some physical dimension, like points or inches rather than in data
coordinates, so that the shift effect is constant at different zoom levels and dpi settings.

One use for an offset is to create a shadow effect, where you draw one object identical to the
first just to the right of it, and just below it, adjusting the zorder to make sure the shadow is
drawn first and then the object it is shadowing above it.

Here we apply the transforms in the opposite order to the use of ScaledTransiation above. The
plot is first made in data coordinates (ax.transData) and then shifted by dx and dy points using
fig.dpi_scale_trans. (In typography, a point is 1/72 inches, and by specifying your offsets in
points, your figure will look the same regardless of the dpi resolution it is saved in.)

222 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Point_%28typography%29

Matplotlib, Release 3.3.0

fig, ax = plt.subplots()

make a simple sine wave

x = np.arange(0., 2., 0.01)

y = np.sin(2*np.pi*x)

line, = ax.plot(x, y, 1lw=3, color='blue')

shift the object over 2 points, and down 2 points

dx, dy = 2/72., -2/72.

offset = transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans)
shadow_transform = ax.transData + offset

now plot the same data with our offset transform;

use the zorder to make sure we are below the line

ax.plot(x, y, lw=3, color='gray',
transform=shadow_transform,
zorder=0.5%line.get_zorder())

ax.set_title('creating a shadow effect with an offset transform')
plt.show()

creating a shadow effect with an offset transform

1.00 +

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Note: The dpi and inches offset is a common-enough use case that we have a special helper
function to create it in matplotlidb. transforms.offset_copy(), which returns a new transform
with an added offset. So above we could have done:

2.3. Advanced 223

Matplotlib, Release 3.3.0

shadow_transform = transforms.offset_copy(ax.transData,
fig=fig, dx, dy, units='inches')

The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three
different transformations that comprise the transformation pipeline from data -> display co-
ordinates. Michael Droettboom implemented the transformations framework, taking care to
provide a clean API that segregated the nonlinear projections and scales that happen in polar
and logarithmic plots, from the linear affine transformations that happen when you pan and
zoom. There is an efficiency here, because you can pan and zoom in your axes which affects
the affine transformation, but you may not need to compute the potentially expensive non-
linear scales or projections on simple navigation events. It is also possible to multiply affine
transformation matrices together, and then apply them to coordinates in one step. This is not
true of all possible transformations.

Here is how the ax.transData instance is defined in the basic separable axis 4zes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We’ve been introduced to the transAxes instance above in Axes coordinates, which maps the
(0, 0), (1, 1) corners of the axes or subplot bounding box to display space, so let’s look at
these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it
maps your view xlim and ylim to the unit space of the axes (and transAxes then takes that unit
space to display space). We can see this in action here

In [80]: ax = subplot(111)

In [81]: ax.set_x1im(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1, 1)
OQut[82]: (-1, 1)

In [84]: ax.transLimits.transform((0, -1))
Out[84]: array([0., 0.1)

In [85]: ax.transLimits.transform((10, -1))
Out[85]: array([1., 0.1)

In [86]: ax.transLimits.transform((10, 1))
Out[86]: array([1., 1.1)

In [87]: ax.transLimits.transform((5, 0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back
to data coordinates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.5])

224 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

The final piece is the self.transScale attribute, which is responsible for the optional non-
linear scaling of the data, e.g., for logarithmic axes. When an Axes is initially setup, this is
just set to the identity transform, since the basic Matplotlib axes has linear scale, but when
you call a logarithmic scaling function like semilogz () or explicitly set the scale to logarithmic
with set_zscale(), then the ax.transScale attribute is set to handle the nonlinear projection.
The scales transforms are properties of the respective xaxis and yaxis Azis instances. For
example, when you call ax.set_xscale('log'), the xaxis updatesits scaletoa matplotlib.scale.
LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection
transformation. The transData matplotlib.projections.polar.Polardzes is similar to that for
the typical separable matplotlib Axes, with one additional piece transProjection:

self .transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, e.g., latitude and longitude for map
data, or radius and theta for polar data, to a separable Cartesian coordinate system. There
are several projection examples in the matplotiib.projections package, and the best way to
learn more is to open the source for those packages and see how to make your own, since
Matplotlib supports extensible axes and projections. Michael Droettboom has provided a nice
tutorial example of creating a Hammer projection axes; see /gallery/misc/custom_projection.

Total running time of the script: (0 minutes 2.763 seconds)

2.4 Colors

Matplotlib has support for visualizing information with a wide array of colors and colormaps.
These tutorials cover the basics of how these colormaps look, how you can create your own,
and how you can customize colormaps for your use case.

For even more information see the examples page.

2.4.1 Specifying Colors

Matplotlib recognizes the following formats to specify a color:

* an RGB or RGBA (red, green, blue, alpha) tuple of float values in closed interval [0, 1]
(e.g., (0.1, 0.2, 0.5) or (0.1, 0.2, 0.5, 0.3));

* a hex RGB or RGBA string (e.g., '#0f0f0f' or '#0f0f0f80'; case-insensitive);

* a shorthand hex RGB or RGBA string, equivalent to the hex RGB or RGBA string ob-
tained by duplicating each character, (e.g., '#abc', equivalent to '#aabbcc', or '#abcd’,
equivalent to '#aabbccdd'; case-insensitive);

* a string representation of a float value in [0, 1] inclusive for gray level (e.g., '0.5');

* one of the characters {'b', 'g', 'r', 'c¢c', 'm', 'y', 'k', 'w'}, which are short-hand
notations for shades of blue, green, red, cyan, magenta, yellow, black, and white. Note
that the colors 'g', 'c', 'm', 'y' donotcoincide with the X11/CSS4 colors. Their partic-
ular shades were chosen for better visibility of colored lines against typical backgrounds.

e a X11/CSS4 color name (case-insensitive);

2.4. Colors 225

Matplotlib, Release 3.3.0

* a name from the xkcd color survey, prefixed with 'xkcd:' (e.g., 'xkcd:sky blue'; case
insensitive);

* one of the Tableau Colors from the 'T10’ categorical palette (the default color
cycle): {'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown',
'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'} (case-insensitive);

* a "CN” color spec, i.e. 'C' followed by a number, which is an index into the default
property cycle (rcParams["axes.prop_cycle"] (default: cycler('color', ['#1£f77b4',
'#££7£f0e', '#2cal2c', '#d62728', '#9467bd', '#8cb64b', '#e377c2', '#7f7fT7f',

"#bcbd22', '#17becf']))); the indexing is intended to occur at rendering time, and
defaults to black if the cycle does not include color.

”"Red”, "Green”, and ”"Blue” are the intensities of those colors, the combination of which span
the colorspace.

How ”Alpha” behaves depends on the zorder of the Artist. Higher zorder Artists are drawn
on top of lower Artists, and ”"Alpha” determines whether the lower artist is covered by the
higher. If the old RGB of a pixel is RGBold and the RGB of the pixel of the Artist being added is
RGBnew with Alpha alpha, then the RGB of the pixel is updated to: RGB = RGBO1d * (1 - Alpha) +
RGBnew * Alpha. Alpha of 1 means the old color is completely covered by the new Artist, Alpha
of 0 means that pixel of the Artist is transparent.

For more information on colors in matplotlib see
» the /gallery/color/color demo example;
* the matplotlib.colors API;

* the /gallery/color/named colors example.

"CN” color selection

”"CN” colors are converted to RGBA as soon as the artist is created. For example,

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

th = np.linspace(0, 2*np.pi, 128)

def demo(sty):
mpl.style.use(sty)
fig, ax = plt.subplots(figsize=(3, 3))
ax.set_title('style: ' .format(sty), color='C0')
ax.plot(th, np.cos(th), 'Cl', label='C1')
ax.plot(th, np.sin(th), 'C2', label='C2')

ax.legend ()

demo('default')
demo ('seaborn')

226 Chapter 2. Tutorials

https://xkcd.com/color/rgb/
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

style: 'default’

1.0 -
0.5 1
0.0
_.US -
C1
— 2
—l.D—
T T T T
0 2 4 6
style: 'seaborn’
1.0
0.5
0.0
-0.5
— 1
—
-1.0
0 2 4 6

will use the first color for the title and then plot using the second and third colors of
each style’s rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e',
"#2cal2c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#TLfTf7f', '#bcbd22', '#17becf'l)).

xked v X11/CSS4

The xkcd colors are derived from a user survey conducted by the webcomic xkcd. Details of
the survey are available on the xkcd blog.

Out of 148 colors in the CSS color list, there are 95 name collisions between the X11/CSS4
names and the xkcd names, all but 3 of which have different hex values. For example 'blue’
maps to '#0000FF' where as 'xkcd:blue' maps to '#0343DF'. Due to these name collisions all of
the xkcd colors have 'xkcd:' prefixed. As noted in the blog post, while it might be interesting
to re-define the X11/CSS4 names based on such a survey, we do not do so unilaterally.

The name collisions are shown in the table below; the color names where the hex values agree
are shown in bold.

2.4. Colors 227

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a-sample-matplotlibrc-file
https://blog.xkcd.com/2010/05/03/color-survey-results/
https://blog.xkcd.com/2010/05/03/color-survey-results/

Matplotlib, Release 3.3.0

import matplotlib._color_data as mcd
import matplotlib.patches as mpatch

overlap = {name for name in mcd.CSS4_COLORS
if "xkcd:" + name in mcd.XKCD_COLORS}

fig = plt.figure(figsize=[4.8, 16])
ax = fig.add_axes([0, 0, 1, 11)

for j, n in enumerate(sorted(overlap, reverse=True)):
weight = None
cn = mcd.CSS4_COLORS [n]
xkcd = mcd.XKCD_COLORS["xkcd:" + n].upper()
if cn == xkcd:
weight = 'bold'

rl = mpatch.Rectangle((0, j), 1, 1, color=cn)

r2 = mpatch.Rectangle((1, j), 1, 1, color=xkcd)

txt = ax.text(2, j+.5, ' ' + n, va='center', fontsize=10,
weight=weight)

ax.add_patch(rl)

ax.add_patch(r2)

ax.axhline(j, color='k')

ax.text(.5, j + 1.5, 'X11', ha='center', va='center')
ax.text(1.5, j + 1.5, 'xkcd', ha='center', va='center')
ax.set_x1im(0, 3)

ax.set_ylim(0, j + 2)

ax.axis('off")

228

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

X11 xked

agua
aguamarine
azure

beige

black

blue

brown
chartreuse
checolate
coral
crimson
cyan
darkblue
darkgreen
fuchsia

gold

goldenrod
green
grey
indigo

ivory

_ khaki

lavender

lightblue

lightgreen

lime
magenta
maroon
navy
olive
orange
orangered

orchid

pink

purple

salmon
sienna

silver

tan

tomato

turquoise

violet

wheat

white

yellow

yellowgreen

2.4. Colors 229

Matplotlib, Release 3.3.0

Out:

(0.0, 3.0, 0.0, 50.0)

Total running time of the script: (0 minutes 1.047 seconds)

2.4.2 Customized Colorbars Tutorial

This tutorial shows how to build and customize standalone colorbars, i.e. without an attached
plot.

Customized Colorbars

A colorbar needs a “mappable” (matplotlib.cm.ScalarMappable) object (typically, an image)
which indicates the colormap and the norm to be used. In order to create a colorbar without
an attached image, one can instead use a ScalarMappable with no associated data.

Basic continuous colorbar

Here we create a basic continuous colorbar with ticks and labels.

The arguments to the colorbar call are the ScalarMappable (constructed using the norm and
cmap arguments), the axes where the colorbar should be drawn, and the colorbar’s orienta-
tion.

For more information see the colorbar API.

import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.cm.cool
norm = mpl.colors.Normalize(vmin=5, vmax=10)

fig.colorbar (mpl.cm.ScalarMappable (norm=norm, cmap=cmap),
cax=ax, orientation='horizontal', label='Some Units')

5 6 i 8 9 10
some Units

Out:

<matplotlib.colorbar.Colorbar object at 0x7£08b3746070>

230 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Extended colorbar with continuous colorscale

The second example shows how to make a discrete colorbar based on a continuous cmap.
With the "extend” keyword argument the appropriate colors are chosen to fill the colorspace,
including the extensions:

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.cm.viridis
bounds = [-1, 2, 5, 7, 12, 15]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N, extend='both')
cb2 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
orientation='horizontal')
cb2.set_label("Discrete intervals with extend='both' keyword")
fig.show()

-1 2 5 7 12 15
Discrete intervals with extend="both' keyword

Discrete intervals colorbar

The third example illustrates the use of a ListedColormap which generates a colormap from a
set of listed colors, colors.BoundaryNorm which generates a colormap index based on discrete
intervals and extended ends to show the ”"over” and ”"under” value colors. Over and under
are used to display data outside of the normalized [0, 1] range. Here we pass colors as gray
shades as a string encoding a float in the 0-1 range.

If a ListedColormap is used, the length of the bounds array must be one greater than the length
of the color list. The bounds must be monotonically increasing.

This time we pass additional arguments to colorbar. For the out-of-range values to display on
the colorbar without using the extend keyword with colors.BoundaryNorm, we have to use the
extend keyword argument directly in the colorbar call, and supply an additional boundary on
each end of the range. Here we also use the spacing argument to make the length of each
colorbar segment proportional to its corresponding interval.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])
cmap.set_over('0.25")
cmap.set_under('0.75")

bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar(
mpl.cm.ScalarMappable (cmap=cmap, norm=norm),
cax=ax,
boundaries=[0] + bounds + [13], # Adding values for extensions.

(continues on next page)

2.4. Colors 231

Matplotlib, Release 3.3.0

(continued from previous page)

extend='both',

ticks=bounds,

spacing='proportional',
orientation='horizontal',

label='Discrete intervals, some other units',

1 2 4 i a8
Discrete intervals, some other units

Out:

<matplotlib.colorbar.Colorbar object at 0x7f£08b473c850>

Colorbar with custom extension lengths

Here we illustrate the use of custom length colorbar extensions, on a colorbar with discrete
intervals. To make the length of each extension the same as the length of the interior colors,
use extendfrac='auto'.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.colors.ListedColormap(['royalblue', 'cyan',
'yellow', 'orange'])

cmap.set_over('red')

cmap.set_under('blue')

bounds = [-1.0, -0.5, 0.0, 0.5, 1.0]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar(
mpl.cm.ScalarMappable(cmap=cmap, norm=norm),
cax=ax,
boundaries=[-10] + bounds + [10],
extend="'both',
extendfrac='auto',
ticks=bounds,
spacing='uniform',
orientation='horizontal',
label='Custom extension lengths, some other units',

plt.show()

==

I I I
-1.0 —0.5 0.0 0.5 1.0
Custom extension lengths, some other units

232 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

2.4.3 Creating Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There
are also external libraries like palettable that have many extra colormaps.

However, we often want to create or manipulate colormaps in Matplotlib. This can be done
using the class ListedColormap Or LinearSegmentedColormap. Seen from the outside, both col-
ormap classes map values between 0 and 1 to a bunch of colors. There are, however, slight
differences, some of which are shown in the following.

Before manually creating or manipulating colormaps, let us first see how we can obtain col-
ormaps and their colors from existing colormap classes.

Getting colormaps and accessing their values

First, getting a named colormap, most of which are listed in Choosing Colormaps in Mat-
plotlib, may be done using matplotlib.cm.get_cmap, Which returns a colormap object. The
second argument gives the size of the list of colors used to define the colormap, and below
we use a modest value of 8 so there are not a lot of values to look at.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.colors import ListedColormap, LinearSegmentedColormap

viridis = cm.get_cmap('viridis', 8)

The object viridis is a callable, that when passed a float between 0 and 1 returns an RGBA
value from the colormap:

’print(viridis(O.SG))

Out:

’(0.122312, 0.633153, 0.530398, 1.0)

ListedColormap

ListedColormap S store their color values in a .colors attribute. The list of colors that com-
prise the colormap can be directly accessed using the colors property, or it can be accessed
indirectly by calling viridis with an array of values matching the length of the colormap.
Note that the returned list is in the form of an RGBA Nx4 array, where N is the length of the
colormap.

print('viridis.colors', viridis.colors)
print('viridis(range(8))', viridis(range(8)))
print('viridis(np.linspace(0, 1, 8))', viridis(np.linspace(0, 1, 8)))

Out:

viridis.colors [[0.267004 0.004874 0.329415 1.]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]

(continues on next page)

2.4. Colors 233

https://jiffyclub.github.io/palettable/

Matplotlib, Release 3.3.0

(continued from previous page)

[0.153364 0.497

[o.
[0.
[0.
[o.
[0.
[0.
[o.
viri
[0.
[o.
[0.
[0.
[o.
[o.
[0.

275191
212395
153364
122312
288921
626579
993248

dis(np.

275191
212395
153364
122312
288921
626579
993248

0.

0
0
0.
0
0
0

633153

. 758394
.854645
.906157

0.
[0.122312 0.633153 0.
[0.288921 0.758394 0.
[0.626579 0.854645 0.
[0.993248 0.906157 O.

viridis(range(8)) [[O.

194905 0.

.359683 0.

.497

633153 0.

.758394 0.

.854645 0.

.906157 0.

linspace(0, 1, 8))

0.194905

0.359683

0.497

0.

0

0

0

0.

0.
0.
0.
0.
0.
0.
0.

557724
530398
428426
223353
143936
267004
496005
55171

557724
530398
428426
223353
143936

496005
55171

557724
530398
428426
2233563
143936

R R R R PR RPRORRPE R R

e T

]
]
]
]
1]
.004874 0.329415 1.]
]
]
]
]
]
]
. 1]
[[0.267004 0.004874 0.329415 1. 1
]
]
]
]
]
]
1]

The colormap is a lookup table, so “oversampling” the colormap returns nearest-neighbor
interpolation (note the repeated colors in the list below)

print('viridis(np.linspace(0, 1, 12))', viridis(np.linspace(0, 1, 12)))

Out:

viridis(ap.

[o.
[o.
[o.
[o.
[o.
[o.
[o.
[o.
[o.
[o.
[o.

267004
275191
212395
212395
153364
122312
288921
288921
626579
993248
993248

linspace(0, 1, 12)) [[0.267004 0.004874 0.329415 1.]
0.004874 0.329415 1.]
0.194905 0.496005 1.]
0.359683 0.55171 1.]
0.359683 0.55171 1.]
0.497 0.557724 1.]
0.633153 0.530398 1.]
0.758394 0.428426 1.]
0.758394 0.428426 1.]
0.854645 0.223353 1.]
0.906157 0.143936 1.]
0.906157 0.143936 1. 1]

LinearSegmentedColormap

LinearSegmentedColormap S do not have a .colors attribute. However, one may still call the
colormap with an integer array, or with a float array between 0 and 1.

copper = cm.get_cmap('copper', 8)

print (' copper (range(8))', copper(range(8)))
print('copper(np.linspace(0, 1, 8))', copper(np.linspace(0, 1, 8)))

Out:

234

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

copper (range(8)) [[O. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1.]
[0.35294109 0.2232 0.14214286 1. 1
[0.52941164 0.3348 0.21321429 1.]
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.35535714 1.]
[1. 0.6696 0.42642857 1.]
(1. 0.7812 0.4975 1. 1]
copper (np.linspace(0, 1, 8)) [[O. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1]
[0.35294109 0.2232 0.14214286 1]
[0.52941164 0.3348 0.21321429 1. 1
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.3565635714 1]
[1. 0.6696 0.42642857 1]
[1. 0.7812 0.4975 1 1]

Creating listed colormaps

Creating a colormap is essentially the inverse operation of the above where we supply a list
or array of color specifications to ListedColormap to make a new colormap.

Before continuing with the tutorial, let us define a helper function that takes one of more
colormaps as input, creates some random data and applies the colormap(s) to an image plot
of that dataset.

def plot_examples(colormaps):

mmn

Helper function to plot data with associated colormap.

np.random.seed (19680801)

data = np.random.randn(30, 30)

n = len(colormaps)

fig, axs = plt.subplots(l, n, figsize=(n * 2 + 2, 3),

constrained_layout=True, squeeze=False)

for [ax, cmap] in zip(axs.flat, colormaps):
psm = ax.pcolormesh(data, cmap=cmap, rasterized=True, vmin=-4, vmax=4)
fig.colorbar(psm, ax=ax)

plt.show()

In the simplest case we might type in a list of color names to create a colormap from those.

cmap = ListedColormap(["darkorange", '"gold", "lawngreen", "lightseagreen"])
plot_examples([cmap])

2.4. Colors 235

Matplotlib, Release 3.3.0

30 4
|| - .HI [
o 3
75 || .H. |
- - = 2
20 - = = L
[| | |
154w - N -0
|
[] [] L —1
04 =
[| H BN
.- -.- -2
5 —
- - -3
|
D T T T T T qI _4
0 5 10 15 20 25 30

In fact, that list may contain any valid matplotlib color specification. Particularly useful for
creating custom colormaps are Nx4 numpy arrays. Because with the variety of numpy opera-
tions that we can do on a such an array, carpentry of new colormaps from existing colormaps
become quite straight forward.

For example, suppose we want to make the first 25 entries of a 256-length "viridis” colormap
pink for some reason:

viridis = cm.get_cmap('viridis', 256)
newcolors = viridis(np.linspace(0, 1, 256))
pink = np.array([248/256, 24/256, 148/256, 1])
newcolors[:25, :] = pink

newcmp = ListedColormap(newcolors)

plot_examples([viridis, newcmp])

30 4 30 4
3 3
25 25
2 2
20 20
1 1
15 0o 15 0
-1 -1
10 10
-2 -2
5 5
-3 -3
0 -4 0 -4
0 10 20 30 0 10 20 30

We can easily reduce the dynamic range of a colormap; here we choose the middle 0.5 of
the colormap. However, we need to interpolate from a larger colormap, otherwise the new

236 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

colormap will have repeated values.

viridis_big = cm.get_cmap('viridis', 512)

newcmp = ListedColormap(viridis_big(np.linspace(0.25, 0.75, 256)))

plot_examples([viridis, newcmp])

L

MJ

=

=]

L

30 4 30
25 25
20 20
15 15
-1
10 10
-2
3
-3
0 -4 0
0 10 20 30

and we can easily concatenate two colormaps:

top = cm.get_cmap('Oranges_r', 128)
bottom = cm.get_cmap('Blues', 128)
newcolors = np.vstack((top(np.linspace(0, 1, 128)),
bottom(np.linspace(0, 1, 128))))
newcmp = ListedColormap(newcolors, name='OrangeBlue')
plot_examples([viridis, newcmp])

30 1m

L

=

=]

L

()
-

0

30 4
|
25 25 4"
20 204"
15 15 g =
-1 [|
10 10 - :..
-2
5 | |
-3 n
0 -4 0 ___I
0 10 20 30

B | 3
b N 2
. | | M
" mom =
" 1 k"= -0
NN
L L1
R il
" .1 3
F . .| 1 _4
10 20 30

Of course we need not start from a named colormap, we just need to create the Nx4 array to
pass to ListedColormap. Here we create a colormap that goes from brown (RGB: 90, 40, 40)

2.4. Colors

237

Matplotlib, Release 3.3.0

to white (RGB: 255, 255, 255).

N = 256

vals = np.ones((N, 4))

vals[:, 0] = np.linspace(90/256, 1, N)
vals[:, 1] = np.linspace(40/256, 1, N)
vals[:, 2] = np.linspace(40/256, 1, N)
newcmp = ListedColormap(vals)
plot_examples([viridis, newcmp])

30

25

20

15

10

L

Creating linear segmented colormaps

LinearSegmentedColormap class specifies colormaps using anchor points between which RGB(A)
values are interpolated.

The format to specify these colormaps allows discontinuities at the anchor points. Each an-
chor point is specified as a row in a matrix of the form [x[i] yleft[i] yright[ill, where x[i]
is the anchor, and yleft[i] and yright[i] are the values of the color on either side of the
anchor point.

If there are no discontinuities, then yleft[i]=yright[i]:

cdict = {'red': [[0.0, 0.0, 0.0],
[0.5, 1.0, 1.0],
[1.0, 1.0, 1.011,
'green': [[0.0, 0.0, 0.0],
[0.25, 0.0, 0.0],
[0.75, 1.0, 1.0],
[1.0, 1.0, 1.0]11],
'blue': [[0.0, 0.0, 0.0],
[0.5, 0.0, 0.0],
[1.0, 1.0, 1.0]11%}

def plot_linearmap(cdict):
newcmp = LinearSegmentedColormap('testCmap', segmentdata=cdict, N=256)

(continues on next page)

238 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

rgba = newcmp(np.linspace(0, 1, 256))
fig, ax = plt.subplots(figsize=(4, 3), constrained_layout=True)
col = ['r', 'g', 'b'l]
for xx in [0.25, 0.5, 0.75]:
ax.axvline(xx, color='0.7', linestyle='--"')
for i in range(3):
ax.plot(np.arange(256) /256, rgbal:, i], color=coll[i])
ax.set_xlabel('index')
ax.set_ylabel('RGB')
plt.show()

plot_linearmap(cdict)

1.0+

0.8 1

0.6

RGB

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
index

In order to make a discontinuity at an anchor point, the third column is different than the
second. The matrix for each of "red”, "green”, "blue”, and optionally ”"alpha” is set up as:

cdict['red'] = [...
[x[i] yleft[i] yright[i]],
[x[i+1] yleft[i+1] yright[i+1]],
2]

and for values passed to the colormap between x[i] and x[i+1], the interpolation is between
yright[i] and yleft[i+1].

In the example below there is a discontinuity in red at 0.5. The interpolation between 0 and
0.5 goes from 0.3 to 1, and between 0.5 and 1 it goes from 0.9 to 1. Note that red[O, 1], and
red[2, 2] are both superfluous to the interpolation because red[0, 1] is the value to the left of
0, and red[2, 2] is the value to the right of 1.0.

cdict['red'] = [[0.0, 0.0, 0.3],
[0.5, 1.0, 0.9],
[1.0, 1.0, 1.0]]

plot_linearmap(cdict)

2.4. Colors 239

Matplotlib, Release 3.3.0

1.0+

0.8 1

0.6

RGB

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
index

Directly creating a segmented colormap from a list

The above described is a very versatile approach, but admittedly a bit cumbersome to imple-
ment. For some basic cases, the use of LinearSegmentedColormap. from_list may be easier. This
creates a segmented colormap with equal spacings from a supplied list of colors.

colors = ["darkorange", "gold", "lawngreen", "lightseagreen"]
cmapl = LinearSegmentedColormap.from_list("mycmap", colors)

If desired, the nodes of the colormap can be given as numbers between 0 and 1. E.g. one
could have the reddish part take more space in the colormap.

nodes = [0.0, 0.4, 0.8, 1.0]
cmap2 = LinearSegmentedColormap.from_list("mycmap", list(zip(nodes, colors)))

plot_examples([cmapl, cmap2])

240 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

30 r-T-4 30 4
-3 -3
25 1 25 1
[| [|
-2 -2
20 1 20 1
-1 -1
15 -0 15 -0
-—1 -—1
10 10
— - —2
5 5
L _3 - —3
0 T T —4 0 T T —4
0 10 20 30 0 10 20 30

References

The use of the following functions, methods, classes and modules is shown in this example:

import matplotlib
matplotlib.axes.Axes.pcolormesh
matplotlib.figure.Figure.colorbar
matplotlib.colors
matplotlib.colors.LinearSegmentedColormap
matplotlib.colors.ListedColormap
matplotlib.cm

matplotlib.cm.get_cmap

Out:

<function get_cmap at 0x7£08c01d4160>

Total running time of the script: (0 minutes 2.805 seconds)

2.4.4 Colormap Normalization

Objects that use colormaps by default linearly map the colors in the colormap from data values
vmin to vmax. For example:

pcm = ax.pcolormesh(x, y, Z, vmin=-1., vmax=1., cmap='RdBu_r')

will map the data in Z linearly from -1 to +1, so Z=0 will give a color at the center of the
colormap RdBu_r (white in this case).

Matplotlib does this mapping in two steps, with a normalization from the input data to
[0, 1] occurring first, and then mapping onto the indices in the colormap. Normalizations
are classes defined in the matplotlib.colors() module. The default, linear normalization is
matplotlib.colors.Normalize().

2.4. Colors 241

Matplotlib, Release 3.3.0

Artists that map data to color pass the arguments vmin and vmax to construct a matplotiib.
colors.Normalize() instance, then call it:

In [1]: import matplotlib as mpl
In [2]: norm = mpl.colors.Normalize(vmin=-1, vmax=1)

In [3]: norm(0)
Out[3]: 0.5

However, there are sometimes cases where it is useful to map data to colormaps in a non-
linear fashion.

Logarithmic

One of the most common transformations is to plot data by taking its logarithm (to the base-
10). This transformation is useful to display changes across disparate scales. Using colors.
LogNorm normalizes the data via logip. In the example below, there are two bumps, one much
smaller than the other. Using colors.Loglorm, the shape and location of each bump can clearly
be seen:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cbook as cbook

N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]

A low hump with a spike coming out of the top right. Needs to have
z/colour azis on a log scale so we see both hump and spike. Llinear
scale only shows the spike.

Z1 = np.exp(-X**2 - Y**2)

Z2 = np.exp(—(X * 10)**2 - (Y * 10)*%2)

Z =171 + 50 * 72

fig, ax = plt.subplots(2, 1)

pem = ax[0] .pcolor(X, Y, Z,
norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()),
cmap='PuBu_r', shading='auto')

fig.colorbar(pcm, ax=ax[0], extend='max')

pem = ax[1] .pcolor(X, Y, Z, cmap='PuBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[1], extend='max')
plt.show()

242 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

10°
102

2
1
0
-1 10-4
_'2 T
-3 -2 -1 0 1 2 3
2
40
1
30
0
20
-1 10
-2
-3 -2 -1 0 1 2 3

Symmetric logarithmic

Similarly, it sometimes happens that there is data that is positive and negative, but we would
still like a logarithmic scaling applied to both. In this case, the negative numbers are also
scaled logarithmically, and mapped to smaller numbers; e.g., if vmin=-vmax, then the negative
numbers are mapped from 0 to 0.5 and the positive from 0.5 to 1.

Since the logarithm of values close to zero tends toward infinity, a small range around zero
needs to be mapped linearly. The parameter linthresh allows the user to specify the size of
this range (-linthresh, linthresh). The size of this range in the colormap is set by linscale.
When linscale == 1.0 (the default), the space used for the positive and negative halves of the
linear range will be equal to one decade in the logarithmic range.

N = 100

X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y#**2)

Z2 = np.exp(-(X - 1)*x2 - (Y - 1)*%2)

Z = (Z1 - 722) * 2

fig, ax = plt.subplots(2, 1)

pcm = ax[0] .pcolormesh(X, Y, Z,
norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,
vmin=-1.0, vmax=1.0, base=10),

(continues on next page)

2.4. Colors 243

Matplotlib, Release 3.3.0

(continued from previous page)

cmap='RdBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[0], extend='both')

pem = ax[1] .pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z), shading='auto')
fig.colorbar(pcm, ax=ax[1], extend='both')

plt.show()
2 100
l —
1071
0 1 Q-2
_lD—l
—1 -
—]
-2 T T T 10
-3 -2 3
2
1 4 1
0+ 0
—1 4 -1
_2 T T T T T T T
-3 -2 -1 0 1 2 3
Power-law

Sometimes it is useful to remap the colors onto a power-law relationship (i.e. y = 27, where v
is the power). For this we use the colors.Powerlorm. It takes as an argument gamma (gamma
== 1.0 will just yield the default linear normalization):

Note: There should probably be a good reason for plotting the data using this type of trans-
formation. Technical viewers are used to linear and logarithmic axes and data transforma-
tions. Power laws are less common, and viewers should explicitly be made aware that they
have been used.

N = 100
X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]

(continues on next page)

244 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

Z1 = (1 + np.sin(Y * 10.)) * X**2
fig, ax = plt.subplots(2, 1)

pcm = ax[0] .pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=0.5),
cmap='PuBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[0], extend='max')

pcem = ax[1] .pcolormesh(X, Y, Z1, cmap='PuBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[1], extend='max')
plt.show()

M s O O
(=]

15

10

Discrete bounds

Another normalization that comes with Matplotlib is colors.Boundarylorm. In addition to vmin
and vmax, this takes as arguments boundaries between which data is to be mapped. The
colors are then linearly distributed between these "bounds”. It can also take an extend argu-
ment to add upper and/or lower out-of-bounds values to the range over which the colors are
distributed. For instance:

In [4]: import matplotlib.colors as colors

(continues on next page)

2.4. Colors 245

Matplotlib, Release 3.3.0

(continued from previous page)

In [5]: bounds = np.array([-0.25, -0.125, 0, 0.5, 1])
In [6]: norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4)

In [7]: print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99]1))
[001233]

Note: Unlike the other norms, this norm returns values from O to ncolors-1.

N = 100

X, Y = np.meshgrid(np.linspace(-3, 3, N), np.linspace(-2, 2, N))
Z1 = np.exp(~X**2 - Yx*2)

Z2 = np.exp(~(X - 1)*x2 - (Y - 1)%%2)

7 = ((z1 - 22) * 2)[:-1, :-1]

fig, ax = plt.subplots(2, 2, figsize=(8, 6), constrained_layout=True)
ax = ax.flatten()

Default morm:

pem = ax[0] .pcolormesh(X, Y, Z, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[0], orientation='vertical')
ax[0] .set_title('Default norm')

Even bounds give a contour-like effect:

bounds = np.linspace(-1.5, 1.5, 7)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)

pcm = ax[1] .pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical')
ax[1] .set_title('BoundaryNorm: 7 boundaries')

Bounds may be unevenly spaced:

bounds = np.array([-0.2, -0.1, 0, 0.5, 11)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)

pcm = ax[2] .pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical')
ax[2] .set_title('BoundaryNorm: nonuniform')

With out-of-bounds colors:

bounds = np.linspace(-1.5, 1.5, 7)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256, extend='both')
pcm = ax[3].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')

The colorbar inherits the "extend" argument from BoundaryNorm.
fig.colorbar(pcm, ax=ax[3], orientation='vertical')

ax[3] .set_title('BoundarylNorm: extend="both"')

plt.show()

246 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Default norm BoundaryNorm: 7 boundaries
2.0 2.0
15
15 1.5
1.0 L0 10
0.5 A - 0.5 0.5 -
0.0 - 0.0 0.0
—-0.5 4 L —0.5 —0.51
-1.0 10 ~101
~1.5 - ~1.5 -
-1.5
_2.0 T T T T T _2.0 T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
BoundaryNorm: nonuniform BoundaryNorm: extend="both"
2.0 - 2.0
15 1.5
1.0 1.0
0.5 0.5 - 0.5
0.0 0.0 - 0.0
—0.5 —0.5 A - —0.5
~1.0 A 4 1.0
-1.0
-1.5 - ~1.5 - [
: -1.5
_2.0 T T T T T _2.0 T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 o0 1 2 3

TwoSlopeNorm: Different mapping on either side of a center

Sometimes we want to have a different colormap on either side of a conceptual center point,
and we want those two colormaps to have different linear scales. An example is a topographic
map where the land and ocean have a center at zero, but land typically has a greater elevation
range than the water has depth range, and they are often represented by a different colormap.

dem = cbook.get_sample_data('topobathy.npz', np_load=True)
topo = dem['topo']

longitude = dem['longitude']

latitude = dem['latitude']

fig, ax = plt.subplots()
make a colormap that has land and ocean clearly delineated and of the
same length (256 + 256)
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256))
all_colors = np.vstack((colors_undersea, colors_land))
terrain_map = colors.LinearSegmentedColormap.from_list(
'terrain_map', all_colors)

make the norm: Note the center is offset so that the land has more
dynamic range:

(continues on next page)

2.4. Colors 247

Matplotlib, Release 3.3.0

(continued from previous page)

divnorm = colors.TwoSlopeNorm(vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=divnorm,
cmap=terrain_map, shading='auto')

Simple geographic plot, set aspect ratio beecause distance between lines of

longitude depends on latitude.

ax.set_aspect(l / np.cos(np.deg2rad(49)))

fig.colorbar(pcm, shrink=0.6)

plt.show()
49,75 4000
49.50 3500
3000
49.25 2500
2000
49.00
1500
48.75 1000
300
48.50
)]
48.25 —500

2345 235.0 235.5 236.0 236.5 237.0 237.5 238.0

Custom normalization: Manually implement two linear ranges

The TwoSlopeNorm described above makes a useful example for defining your own norm.

class MidpointNormalize(colors.Normalize):
def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False):
self.vcenter = vcenter
colors.Normalize.__init__(self, vmin, vmax, clip)

def __call__(self, value, clip=None):
I'm tgnoring masked values and all kinds of edge cases to make a
simple exzample. ..

(continues on next page)

248 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))

fig, ax
midnorm

= plt.subplots()

= MidpointNormalize (vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=midnorm,
cmap=terrain_map, shading='auto')

ax.set_aspect(l / np.cos(np.deg2rad(49)))

fig.colorbar(pcm, shrink=0.6, extend='both')

plt.show()

49.75

4000
49.50 3500

3000
49.25 2500

2000
49.00

1500
48.75 1000

500
48.50 0

=500
48.25

2345 235.0 235.5 236.0 236.5 237.0 237.5 238.0

Total running time of the script: (0 minutes 3.373 seconds)

2.4.5 Choosing Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There
are also external libraries like [palettable] and [colorcet] that have many extra colormaps.
Here we briefly discuss how to choose between the many options. For help on creating your
own colormaps, see Creating Colormaps in Matplotlib.

2.4. Colors 249

Matplotlib, Release 3.3.0

Overview

The idea behind choosing a good colormap is to find a good representation in 3D colorspace
for your data set. The best colormap for any given data set depends on many things including:

* Whether representing form or metric data ([Ware])

* Your knowledge of the data set (e.g., is there a critical value from which the other values
deviate?)

» If there is an intuitive color scheme for the parameter you are plotting
» If there is a standard in the field the audience may be expecting

For many applications, a perceptually uniform colormap is the best choice; i.e. a colormap
in which equal steps in data are perceived as equal steps in the color space. Researchers
have found that the human brain perceives changes in the lightness parameter as changes in
the data much better than, for example, changes in hue. Therefore, colormaps which have
monotonically increasing lightness through the colormap will be better interpreted by the
viewer. A wonderful example of perceptually uniform colormaps is [colorcet].

Color can be represented in 3D space in various ways. One way to represent color is using
CIELAB. In CIELAB, color space is represented by lightness, L*; red-green, «*; and yellow-
blue, bv*. The lightness parameter L* can then be used to learn more about how the matplotlib
colormaps will be perceived by viewers.

An excellent starting resource for learning about human perception of colormaps is from
[IBM].

Classes of colormaps

Colormaps are often split into several categories based on their function (see, e.g.,
[Moreland]):

1. Sequential: change in lightness and often saturation of color incrementally, often using
a single hue; should be used for representing information that has ordering.

2. Diverging: change in lightness and possibly saturation of two different colors that meet
in the middle at an unsaturated color; should be used when the information being plotted
has a critical middle value, such as topography or when the data deviates around zero.

3. Cyclic: change in lightness of two different colors that meet in the middle and begin-
ning/end at an unsaturated color; should be used for values that wrap around at the
endpoints, such as phase angle, wind direction, or time of day.

4. Qualitative: often are miscellaneous colors; should be used to represent information
which does not have ordering or relationships.

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from matplotlib import cm

from colorspacious import cspace_converter
from collections import OrderedDict

cmaps = OrderedDict()

250 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Sequential

For the Sequential plots, the lightness value increases monotonically through the colormaps.
This is good. Some of the L* values in the colormaps span from 0 to 100 (binary and the
other grayscale), and others start around L* = 20. Those that have a smaller range of L* will
accordingly have a smaller perceptual range. Note also that the L* function varies amongst
the colormaps: some are approximately linear in L* and others are more curved.

cmaps ['Perceptually Uniform Sequential'] = [
'viridis', 'plasma', 'inferno', 'magma', 'cividis']

cmaps ['Sequential'] = [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'Y10rBr', 'Y1lOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'Y1Gn']

Sequential2

Many of the L* values from the Sequential2 plots are monotonically increasing, but some
(autumn, cool, spring, and winter) plateau or even go both up and down in L* space. Others
(afmhot, copper, gist heat, and hot) have kinks in the L* functions. Data that is being rep-
resented in a region of the colormap that is at a plateau or kink will lead to a perception of
banding of the data in those values in the colormap (see [mycarta-banding] for an excellent
example of this).

cmaps['Sequential (2)'] = [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']

Diverging

For the Diverging maps, we want to have monotonically increasing L* values up to a maximum,
which should be close to L* = 100, followed by monotonically decreasing L* values. We are
looking for approximately equal minimum L* values at opposite ends of the colormap. By
these measures, BrBG and RdBu are good options. coolwarm is a good option, but it doesn’t
span a wide range of L* values (see grayscale section below).

cmaps ['Diverging'] = [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RAY1Bu', 'RdY1Gn', 'Spectral', 'coolwarm', 'bwr', 'seismic']

Cyclic

For Cyclic maps, we want to start and end on the same color, and meet a symmetric center
point in the middle. L* should change monotonically from start to middle, and inversely from
middle to end. It should be symmetric on the increasing and decreasing side, and only differ in
hue. At the ends and middle, L* will reverse direction, which should be smoothed in L* space
to reduce artifacts. See [kovesi-colormaps] for more information on the design of cyclic maps.

2.4. Colors 251

Matplotlib, Release 3.3.0

The often-used HSV colormap is included in this set of colormaps, although it is not symmetric
to a center point. Additionally, the L* values vary widely throughout the colormap, making it
a poor choice for representing data for viewers to see perceptually. See an extension on this
idea at [mycarta-jet].

cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv']

Qualitative

Qualitative colormaps are not aimed at being perceptual maps, but looking at the lightness
parameter can verify that for us. The L* values move all over the place throughout the col-
ormap, and are clearly not monotonically increasing. These would not be good options for
use as perceptual colormaps.

cmaps['Qualitative'] = ['Pastell', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Setl', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']

Miscellaneous

Some of the miscellaneous colormaps have particular uses for which they have been created.
For example, gist earth, ocean, and terrain all seem to be created for plotting topography
(green/brown) and water depths (blue) together. We would expect to see a divergence in
these colormaps, then, but multiple kinks may not be ideal, such as in gist earth and terrain.
CMRmap was created to convert well to grayscale, though it does appear to have some small
kinks in L*. cubehelix was created to vary smoothly in both lightness and hue, but appears to
have a small hump in the green hue area. turbo was created to display depth and disparity
data.

The often-used jet colormap is included in this set of colormaps. We can see that the L*
values vary widely throughout the colormap, making it a poor choice for representing data
for viewers to see perceptually. See an extension on this idea at [mycarta-jet] and [turbo].

cmaps['Miscellaneous'] = [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg',
'gist_rainbow', 'rainbow', 'jet', 'turbo', 'nipy_spectral’,

'gist_ncar']

First, we’ll show the range of each colormap. Note that some seem to change more "quickly”
than others.

nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps.items())
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients(cmap_category, cmap_list, nrows):
fig, axes = plt.subplots(nrows=nrows)
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)
axes[0] .set_title(cmap_category + ' colormaps', fontsize=14)

for ax, name in zip(axes, cmap_list):

(continues on next page)

252 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))

pos = list(ax.get_position().bounds)

x_text = pos[0] - 0.01

y_text = pos[1] + pos[3]/2.

fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

Turn off *all* ticks & spines, not just the ones with colormaps.

for ax in axes:
ax.set_axis_off ()

for cmap_category, cmap_list in cmaps.items():
plot_color_gradients(cmap_category, cmap_list, nrows)

plt.show()

Perceptually Uniform Sequential colormaps

wris
pesme [

werno [
vaoms [

ovos I

2.4. Colors 253

Matplotlib, Release 3.3.0

Greys
Purples
Blues
Greens
Oranges
Reds
YIOrBr
YIOrRd
OrRd
PuRd
RdPu
BuPu
GnBu
PuBu
YIGnBu
PuBuGn
BuGn
YIGn

Sequential colormaps

254

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Sequential (2) colormaps
binary
gist_yarg

Wistia
o I
e
g reat [
covver I

2.4. Colors

255

Matplotlib, Release 3.3.0

Rd¥IBu
Rd¥lGn

spectral [N

coolwarm

seismic

PiYG
PRGN
BrBG

PuOr

racy I
racu

bwr

Diverging colormaps

256

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Cyclic colormaps

wiight
wight_shitced [.
rov [B

2.4. Colors 257

Matplotlib, Release 3.3.0

Qualitative colormaps

Pastell
Pastel2
Paired
Accent
Dark2
Setl
Set2
Set3

]
tablo

wofil B B B OB Hom B o N
-y 2 B s - =

258

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

oot stom NN
ey
supor:
e
cerc
N
gt rainbow [N L
inbow [

Lightness of Matplotlib colormaps

Here we examine the lightness values of the matplotlib colormaps. Note that some documen-
tation on the colormaps is available ([list-colormaps]).

mpl.rcParams.update({'font.size': 12})

Number of colormap per subplot for particular cmap categories

_DSUBS = {'Perceptually Uniform Sequential': 5, 'Sequential': 6,
'Sequential (2)': 6, 'Diverging': 6, 'Cyclic': 3,
'Qualitative': 4, 'Miscellaneous': 6}

Spacing between the colormaps of a subplot
= {'Perceptually Uniform Sequential': 1.4, 'Sequential': 0.7,
'Sequential (2)': 1.4, 'Diverging': 1.4, 'Cyclic': 1.4,
'Qualitative': 1.4, 'Miscellaneous': 1.4}

Indices to step through colormap
x = np.linspace(0.0, 1.0, 100)

Do plot
for cmap_category, cmap_list in cmaps.items():

Do subplots so that colormaps have enough space.
Default is 6 colormaps per subplot.

(continues on next page)

2.4. Colors 259

Matplotlib, Release 3.3.0

(continued from previous page)

dsub = _DSUBS.get(cmap_category, 6)
nsubplots = int(np.ceil(len(cmap_list) / dsub))

squeeze=False to handle similarly the case of a single subplot
fig, axes = plt.subplots(nrows=nsubplots, squeeze=False,

figsize=(7, 2.6*nsubplots))

for i, ax in enumerate(axes.flat):

locs = [1 # locations for text labels
for j, cmap in enumerate(cmap_list[i*dsub: (i+1)*dsub]):

Get RGB values for colormap and convert the colormap in
CAMO2-UCS colorspace. lab[0, :, O] is the lightness.
rgb = cm.get_cmap(cmap) (x) [np.newaxis, :, :3]

lab = cspace_converter("sRGB1", "CAM02-UCS") (rgb)

Plot colormap L wvalues. Do separately for each category

so each plot can be pretty. To make scatter markers change
color along plot:

http://stackoverflow.com/questions/8202605/

if cmap_category == 'Sequential':
These colormaps all start at high lightness but we want them
reversed to look nice in the plot, so reverse the order.

y_ = lab[0, ::-1, 0]
c_ = x[::-1]
else:
y_ = lab[0, :, 0]
c_ =X

dc = _DC.get(cmap_category, 1.4) # cmaps horizontal spacing
ax.scatter(x + j*dc, y_, c=c_, cmap=cmap, s=300, linewidths=0.0)

Store locations for colormap labels
if cmap_category in ('Perceptually Uniform Sequential',
'Sequential'):
locs.append(x[-1] + j*dc)
elif cmap_category in ('Diverging', 'Qualitative', 'Cyclic',
'Miscellaneous', 'Sequential (2)'):
locs.append(x[int(x.size/2.)] + j*dc)

Set up the azis limits:

* the 1st subplot is used as a reference for the z—azis limits
% lightness wvalues goes from 0 to 100 (y-azis limits)
ax.set_xlim(axes[0, 0].get_x1im())

ax.set_ylim(0.0, 100.0)

Set up labels for colormaps

ax.xaxis.set_ticks_position('top')

ticker = mpl.ticker.FixedLocator (locs)
ax.xaxis.set_major_locator(ticker)

formatter = mpl.ticker.FixedFormatter (cmap_list[i*dsub: (i+1)*dsub])
ax.xaxis.set_major_formatter(formatter)
ax.xaxis.set_tick_params(rotation=50)

(continues on next page)

260

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

ax.set_ylabel('Lightness $L™*$', fontsize=12)
ax.set_xlabel(cmap_category + ' colormaps', fontsize=14)

fig.tight_layout (h_pad=0.0, pad=1.5)
plt.show()

100

Lightness L *
Ln
S

o

Perceptually Uniform Sequential colormaps

2.4. Colors 261

Matplotlib, Release 3.3.0

100 1 1 1 1 1 1

|
wun
L

J
(%]
I

Lightness L~
n
S

o
1

100
75

Lightness L "
Ln
S

J
(%]
1

(=

100

Lightness L "
Ln |
S O

M
o wun

Sequential colormaps

262 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

& &
Y>ld &
S S

75

T T
(=] u
L ™~

100

. 7ssauybn

o

)

N
\
\

100

Ta]
[~

. 7ssauybn

T T
(= Tyl o
Tg] ™~

73]
o}
18]
£
_

] /I_U.
o
[
S

/m

b e
-
Q
3
2
Q
(V)]

S n o in o

== [~ Ta] ™~

1

. 7ssauybn

263

2.4. Colors

Matplotlib, Release 3.3.0

100 i i | i | i

Lightness L
Ln |
S O

J
(%]
1

o

100

Lightness L "
Ln |
S O

J
(%]
I

o

Diverging colormaps

>
<
S
L “u?
NS N
& & &

Lightness L "
=
Ln o
o O O

Cyclic colormaps

264 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

o w O N
m_....,....l._./_

. 7ssauybn

e ~

Ml

ﬂla'
S v 2 ;n © o
m F~ gl ™~ m

. 7ssauybn

. 7 ssauybn

Qualitative colormaps

265

2.4. Colors

Matplotlib, Release 3.3.0

>
_ {,@ &2

luo i Il I Il I i

&

Lightness L

*

Lightness L

W

Lightness L

Miscellaneous colormaps

Grayscale conversion

It is important to pay attention to conversion to grayscale for color plots, since they may be
printed on black and white printers. If not carefully considered, your readers may end up with
indecipherable plots because the grayscale changes unpredictably through the colormap.

Conversion to grayscale is done in many different ways [bw]. Some of the better ones use a
linear combination of the rgb values of a pixel, but weighted according to how we perceive
color intensity. A nonlinear method of conversion to grayscale is to use the L* values of the
pixels. In general, similar principles apply for this question as they do for presenting one’s
information perceptually; that is, if a colormap is chosen that is monotonically increasing in

266 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

L* values, it will print in a reasonable manner to grayscale.

With this in mind, we see that the Sequential colormaps have reasonable representations in
grayscale. Some of the Sequential2 colormaps have decent enough grayscale representa-
tions, though some (autumn, spring, summer, winter) have very little grayscale change. If a
colormap like this was used in a plot and then the plot was printed to grayscale, a lot of the
information may map to the same gray values. The Diverging colormaps mostly vary from
darker gray on the outer edges to white in the middle. Some (PuOr and seismic) have notice-
ably darker gray on one side than the other and therefore are not very symmetric. coolwarm
has little range of gray scale and would print to a more uniform plot, losing a lot of detail. Note
that overlaid, labeled contours could help differentiate between one side of the colormap vs.
the other since color cannot be used once a plot is printed to grayscale. Many of the Qualita-
tive and Miscellaneous colormaps, such as Accent, hsyv, jet and turbo, change from darker to
lighter and back to darker grey throughout the colormap. This would make it impossible for
a viewer to interpret the information in a plot once it is printed in grayscale.

mpl.rcParams.update({'font.size': 143})

Indices to step through colormap.
x = np.linspace(0.0, 1.0, 100)

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients(cmap_category, cmap_list):
fig, axes = plt.subplots(nrows=len(cmap_list), ncols=2)
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99,
wspace=0.05)
fig.suptitle(cmap_category + ' colormaps', fontsize=14, y=1.0, x=0.6)

for ax, name in zip(axes, cmap_list):

Get RGB wvalues for colormap.
rgb = cm.get_cmap(plt.get_cmap(name)) (x) [np.newaxis, :, :3]

Get colormap in CAMO2-UCS colorspace. We want the lightness.
lab = cspace_converter("sRGB1", "CAM02-UCS") (rgb)

L = lab[0, :, 0]

L = np.float32(np.vstack((L, L, L)))

ax[0] . imshow(gradient, aspect='auto', cmap=plt.get_cmap (name))
ax[1].imshow(L, aspect='auto', cmap='binary_r', vmin=0., vmax=100.)
pos = list(ax[0].get_position() .bounds)

x_text = pos[0] - 0.01

y_text = pos[1] + pos[3]/2.

fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

Turn off *all* ticks & spines, not just the onmes with colormaps.
for ax in axes.flat:

ax.set_axis_off ()

plt.show()

for cmap_category, cmap_list in cmaps.items():

plot_color_gradients(cmap_category, cmap_list)

2.4. Colors 267

Matplotlib, Release 3.3.0

Perceptually Uniform Sequential colormaps

viridis

plasma

inferno

magma

cividis

268 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Greys
Purples
Blues
Greens
Oranges
Reds
YIOrBr
YIOrRd
OrRd
PuRd
RdPu
BuPu
GnBu
PuBu
YIGnBu
PuBuGn
BuGn
YIGn

Sequential colormaps

2.4. Colors

26

(C=]

Matplotlib, Release 3.3.0

Sequential (2) colormaps
binary

gist_yarg
gist gray
gray
bone

pink
spring
summer
autumn
winter
cool

Wistia

g

afmhot
gist_heat

copper

270 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Diverging colormaps

w0
0

RiYG
PRGN
BrBG
PuOr
RdGy
RdBu

Rd¥YIBu
Rd¥IGn
Spectral
coolwarm
bwr

seismic

2.4. Colors

271

Matplotlib, Release 3.3.0

Cyclic colormaps

. -

twilight_shifted

272 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Qualitative colormaps
Pastell

Pastel2

Paired

Accent

Dark2

Setl

:

9
]

tablo

g

S
—
-
—
-
e
I
e
|
e
=

tab20b

tab20c

2.4. Colors

273

Matplotlib, Release 3.3.0

Miscellaneous colormaps

flag || BERRRRNNNI RERRRLND

wom [ENBNEEEEEE [EEREEEEEE
ocean [N
git_cartn [N
eran [S —
gt ser [
arupio: I
e .
cuvenii | e
S N

gist_rainbow

rainbow
et
turbo

nipy_spectral

gist_ncar

Color vision deficiencies

There is a lot of information available about color blindness (e.g., [colorblindness]). Addition-
ally, there are tools available to convert images to how they look for different types of color
vision deficiencies.

The most common form of color vision deficiency involves differentiating between red and
green. Thus, avoiding colormaps with both red and green will avoid many problems in gen-
eral.

References

Total running time of the script: (0 minutes 13.175 seconds)

2.5 Provisional

These tutorials cover proposed APIs of any complexity. These are here to document features
that we have released, but want to get user feedback on before committing to them. Please
have a look, try them out and give us feedback on gitter, discourse, or the the mailing list!
But, be aware that we may change the APIs without warning in subsequent versions.

274 Chapter 2. Tutorials

https://gitter.im/matplotlib/matplotlib
https://discourse.matplotlib.org
https://mail.python.org/mailman/listinfo/matplotlib-users

Matplotlib, Release 3.3.0

2.5.1 Complex and semantic figure composition

Warning: This tutorial documents experimental / provisional API. We are releasing this
in v3.3 to get user feedback. We may make breaking changes in future versions with no
warning.

Laying out Axes in a Figure in a non uniform grid can be both tedious and verbose. For
dense, even grids we have Figure.subplots but for more complex layouts, such as Axes that
span multiple columns / rows of the layout or leave some areas of the Figure blank, you can
use gridspec.GridSpec (see Customizing Figure Layouts Using GridSpec and Other Functions)
or manually place your axes. Figure.subplot_mosaic aims to provide an interface to visually
lay out your axes (as either ASCII art or nested lists) to streamline this process.

This interface naturally supports naming your axes. Figure.subplot_mosaic returns a dictio-
nary keyed on the labels used to lay out the Figure. By returning data structures with names,
it is easier to write plotting code that is independent of the Figure layout.

This is inspired by a proposed MEP and the patchwork library for R. While we do not im-
plement the operator overloading style, we do provide a Pythonic API for specifying (nested)
Axes layouts.

import matplotlib.pyplot as plt
import numpy as np

Helper function used for wvisualization in the following examples
def identify_axes(ax_dict, fontsize=48):

mmn

Helper to identify the Azes in the examples below.
Draws the label in a large font in the center of the Azes.

Parameters
az_dict : Dict[str, Azes]
Mapping between the title / label and the Azes.

fontsize : int, optional
How big the label should be
mnn
kw = dict(ha="center", va='"center", fontsize=fontsize, color='"darkgrey")
for k, ax in ax_dict.items():
ax.text (0.5, 0.5, k, transform=ax.transAxes, **kw)

If we want a 2x2 grid we can use Figure.subplots which returns a 2D array of azes.Azes which
we can index into to do our plotting.

np.random. seed (19680801)
hist_data = np.random.randn(1_500)

fig = plt.figure(constrained_layout=True)
ax_array = fig.subplots(2, 2, squeeze=False)

ax_array[0, 0].bar(['a', 'b', 'c'], [5, 7, 91)

(continues on next page)

2.5. Provisional 275

https://github.com/matplotlib/matplotlib/pull/4384
https://github.com/thomasp85/patchwork

Matplotlib, Release 3.3.0

(continued from previous page)

ax_array[0, 1].plot([1, 2, 31)
ax_array[1, O] .hist(hist_data, bins='auto')
ax_array[1, 1].imshow([[1, 2], [2, 111D

identify_axes(
{(j, k): a for j, r in enumerate(ax_array) for k, a in enumerate(r)}

)
T T T T
0.5 1.0 1.5 2.0
125 -
0.0
100 -
75 4 0.5
50
1.0 1
25
0- 1.5 T

-2 0 2 4 -0.5 00 0.5 1.0 1.5

Using Figure.subplot_mosaic we can produce the same layout but give the axes semantic
names

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic(

[['bar', 'plot'l],

['hist', 'image'l])
ax_dict['bar'] .bar(['a', 'b', 'c'], [5, 7, 91)
ax_dict['plot'].plot([1, 2, 3])
ax_dict['hist'].hist(hist_data)
ax_dict['image'].imshow([[1, 2], [2, 111)
identify_axes(ax_dict)

276 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

0.5 1.0 1.5 2.0

400
0.0

300 -
0.5 4

200

100 - 1.0 1

0- 1.5 |
-2 0 2 4 —-0.5 0.0 0.5 1.0 1.5

A key difference between Figure. subplotsand Figure.subplot_mosaicis the return value. While
the former returns an array for index access, the latter returns a dictionary mapping the labels
to the azes. Azes instances created

print(ax_dict)

Out:

{'plot': <AxesSubplot:label='plot'>, 'bar': <AxesSubplot:label='bar'>, 'hist': <AxesSubplot:label=
—'hist'>, 'image': <AxesSubplot:label='image'>}

String short-hand

By restricting our axes labels to single characters we can use Using we can "draw” the Axes
we want as "ASCII art”. The following

layout = nnn
AB
CD

nnn

will give us 4 Axes laid out in a 2x2 grid and generates the same figure layout as above (but
now labeled with {"a", "B", "c", "D"} rather than {"bar", "plot", "hist", "image"}).

2.5. Provisional 277

Matplotlib, Release 3.3.0

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic(layout)

identify_axes(ax_dict)

1.0

0.8

0.6

0.4

0.2

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.8

0.6

0.4

0.2 A

0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0

0.2

0.4

0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2 A

0.0
0.0

0.2

0.4

0.6 0.8 1.0

Something we can do with Figure.subplot_mosaic that you can not do with Figure.subplots is
specify that an Axes should span several rows or columns.

If we want to re-arrange our four Axes to have C be a horizontal span on the bottom and D be

a vertical span on the right we would do

axd = plt.figure(constrained_layout=True).subplot_mosaic(

mwmn

ABD
CcCD

i

)

identify_axes(axd)

278

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 : 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0
1.0
0.8 -
0.6 -
0.4 -
0.2 -
0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4 1

0.2 1

0.0
0.0

0.5

1.0

If we do not want to fill in all the spaces in the Figure with Axes, we can specify some spaces

in the grid to be blank

axd = plt.figure(constrained_layout=True) .subplot_mosaic(

mmn

4.c
BBB
.D.
nnn

)

identify_axes(axd)

2.5. Provisional

279

Matplotlib, Release 3.3.0

1.00 1.00
0.75 0.75 4
0.50 - 0.50 4
0.25 0.25 4
0.00 T 0.00 T
0.0 0.5 1.0 0.0 0.5 1.0
1.00
0.75
0.50 -
0.25
0.00 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
1.00
0.75 4
0.50 4
0.25 +
0.00 |
0.0 0.5 1.0

If we prefer to use another character (rather than a period ".") to mark the empty space, we
can use empty sentinel to specify the character to use.

axd = plt.figure(constrained_layout=True) .subplot_mosaic(
aX
Xb
empty_sentinel="X",

)

identify_axes(axd)

280 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0 : . ; .

00 02 04 06 08 10
1.0
0.8 -
0.6 -
0.4 -
0.2 -
0.0
0.0

0.2

0.4

0.6

0.8

1.0

Internally there is no meaning attached to the letters we use, any Unicode code point is valid!

axd = plt.figure(constrained_layout=True) .subplot_mosaic(

mwmn
mwn

)

identify_axes(axd)

2.5. Provisional

281

Matplotlib, Release 3.3.0

1.0 1.0
0.8 4 0.8 4
0.6 - 0.6 -
0.4 4 0.4 4
0.2 4 0.2 1
0.0 0.0 : ; ; :
00 02 04 06 08 10 00 02 04 06 08 10
1.0 1.0
0.8 1 0.8 1
0.6 - 0.6 -
0.4 0.4
0.2 1 0.2 1
0.0 : : : : 0.0 : : : :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

It is not recommended to use white space as either a label or an empty sentinel with the string
shorthand because it may be stripped while processing the input.

Controlling layout and subplot creation

This feature is built on top of gridspec and you can pass the keyword arguments through to
the underlying gridspec.GridSpec (the same as Figure.subplots).

In this case we want to use the input to specify the arrangement, but set the relative widths
of the rows / columns via gridspec_kw.

axd = plt.figure(constrained_layout=True) .subplot_mosaic(
.a.
bAc
.d.
”””’
gridspec_kw={
set the height ratios between the rows
"height_ratios": [1, 3.5, 1],
set the width ratios between the columns
"width_ratios": [1, 3.5, 1],
1},
)

identify_axes(axd)

282 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0
0.5 A
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 .0
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 T 0.0 T T T T 0.0 T
00 05 1.0 0.0 0.2 0.4 0.6 0.8 .0 00 05 1.0
1.0
0.5 A
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Or use the {left, right, bottom, top} keyword arguments to position the overall layout to put

multiple versions of the same layout in a figure

layout = """AA
BC""
fig = plt.figure()
axd = fig.subplot_mosaic(
layout,
gridspec_kw={
"bottom": 0.25,

"top": 0.95,
"left": 0.1,
"right": 0.5,

"wspace": 0.5,
"hspace": 0.5,

3,
)

identify_axes(axd)

axd = fig.subplot_mosaic(
layout,
gridspec_kw={
"bottom": 0.05,
"top": 0.75,
"left": 0.6,
"right": 0.95,

(continues on next page)

2.5. Provisional

283

Matplotlib, Release 3.3.0

(continued from previous page)

"wspace": 0.5,
"hspace": 0.5,

3,
)

identify_axes(axd)

1.00
0.75 4
0.50
0.25 4
0.00 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
1.00 1.00
0.75 + 0.75
0.50 4 0.50 -
0.25 + 0.25
0.00 | 0.00 |
0.0 0.5 1.0 0.0 0.5 1.0

1.00
0.75 4
0.50
0.25 4
0.00 | | | |
00 02 04 06 08 10
1.00 1.00
0.75 + 0.75 +
0.50 4 0.50 4
0.25 + 0.25 +
0.00 | 0.00 |
00 05 1o 00 05 10

We can also pass through arguments used to create the subplots (again, the same as Figure.

subplots).

axd = plt.figure(constrained_layout=True) .subplot_mosaic(

"AB", subplot_kw={"projection": "polar"}

)

identify_axes(axd)

284

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

90 90

180°

270° 270°

Nested List input

Everything we can do with the string short-hand we can also do when passing in a list (inter-
nally we convert the string shorthand to a nested list), for example using spans, blanks, and
gridspec_kw:

axd = plt.figure(constrained_layout=True) .subplot_mosaic(
[["main", "zoom"],
["main", "BLANK"]
1,
empty_sentinel="BLANK",
gridspec_kw={"width_ratios": [2, 1]}
)

identify_axes(axd)

2.5. Provisional 285

Matplotlib, Release 3.3.0

1.0 1.0
0.8 1
0.8 - 0.6 7
0.4 1
0.2 1
0.6 1
0.0 .

T T
0.00 025 050 075 1.00

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

In addition, using the list input we can specify nested layouts. Any element of the inner list
can be another set of nested lists:

inner = [
["inner A"],
["inner B"],

]

outer_nested_layout = [
["main", inner],
["bottom", "bottom"],

]

axd = plt.figure(constrained_layout=True) .subplot_mosaic(
outer_nested_layout, empty_sentinel=None

)

identify_axes(axd, fontsize=36)

286 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0 1.0
0.8 - 0.5 4
0.6 4 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.4 1 1.0
0.2 ~ 0.5 1
G.O T T T T G.O T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0
0.8
0.6
0.4 1
0.2 ~
G.O T T T T

0.0 0.2 0.4 0.6 0.8 1.0

We can also pass in a 2D NumPy array to do things like

layout = np.zeros((4, 4), dtype=int)

for j in range(4):
layout[j, jl = j + 1

axd = plt.figure(constrained_layout=True) .subplot_mosaic(
layout, empty_sentinel=0

)

identify_axes(axd)

2.5. Provisional 287

Matplotlib, Release 3.3.0

1.0
0.5 4
0.0 |
0.0 0.5 1.0
1.0
0.5 4
0.0 |
0.0 0.5 1.0
1.0
0.5
0.0 |
0.0 0.5 1.0
1.0
0.5~
0.0 |

0.0 0.5 1.0

Total running time of the script: (0 minutes 5.568 seconds)

2.6 Text

matplotlib has extensive text support, including support for mathematical expressions, true-
type support for raster and vector outputs, newline separated text with arbitrary rotations,
and unicode support. These tutorials cover the basics of working with text in Matplotlib.

2.6.1 Text in Matplotlib Plots

Introduction to plotting and working with text in Matplotlib.

Matplotlib has extensive text support, including support for mathematical expressions, true-
type support for raster and vector outputs, newline separated text with arbitrary rotations,
and unicode support.

Because it embeds fonts directly in output documents, e.g., for postscript or PDF, what you
see on the screen is what you get in the hardcopy. FreeType support produces very nice,
antialiased fonts, that look good even at small raster sizes. Matplotlib includes its own
matplotlib. font_manager (thanks to Paul Barrett), which implements a cross platform, W3C
compliant font finding algorithm.

288 Chapter 2. Tutorials

https://www.freetype.org/
https://www.w3.org/

Matplotlib, Release 3.3.0

The user has a great deal of control over text properties (font size, font weight, text location
and color, etc.) with sensible defaults setin the rc file. And significantly, for those interested in
mathematical or scientific figures, Matplotlib implements a large number of TeX math symbols
and commands, supporting mathematical expressions anywhere in your figure.

Basic text commands

The following commands are used to create text in the pyplot interface and the object-oriented
API:

pyplot 00 API description

API

text text Add text at an arbitrary location of the Azes.

annotate | annotate | Add an annotation, with an optional arrow, at an arbitrary location
of the 4zes.

zlabel set_zlabel] Add a label to the 4zes’s x-axis.

ylabel set_ylabel Add a label to the Azes’s y-axis.

title set_title | Add a title to the Azes.

figtext text Add text at an arbitrary location of the Figure.

suptitle | suptitle | Add a title to the Figure.

All of these functions create and return a Tezt instance, which can be configured with a variety
of font and other properties. The example below shows all of these commands in action, and
more detail is provided in the sections that follow.

import matplotlib
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)

Set titles for the figure and the subplot respectively
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax.set_title('axes title')

ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')

Set both z— and y-axis limits to [0, 10] instead of default [0, 1]
ax.axis ([0, 10, 0, 10]1)

ax.text(3, 8, 'boxed italics text in data coords', style='italic',
bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 10})

ax.text(2, 6, r'an equation: $E=mc~2$', fontsize=15)

ax.text(3, 2, 'unicode: Institut fir Festkérperphysik')

ax.text(0.95, 0.01, 'colored text in axes coords',
verticalalignment='bottom', horizontalalignment='right',

transform=ax.transAxes,
color='green', fontsize=15)

(continues on next page)

2.6. Text 289

Matplotlib, Release 3.3.0

(continued from previous page)

ax.plot([2], [1], 'o")
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
arrowprops=dict(facecolor='black', shrink=0.05))

plt.show()
bold figure suptitle
axes title
10
g - boxed italics text in data coords
6 an equation: E = mc?
2
1]
=
4 annotate
5 unicode: Institut fur Festkorperphysik
L]
. colored text in axes coords
0 2 4 6 8 10

xlabel

Labels for x- and y-axis

Specifying the labels for the x- and y-axis is straightforward, via the set_zlabel and set_ylabel
methods.

import matplotlib.pyplot as plt
import numpy as np

x1 = np.linspace(0.0, 5.0, 100)
y1l = np.cos(2 * np.pi * x1) * np.exp(-x1)

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1l, y1)

ax.set_xlabel('time [s]')
ax.set_ylabel('Damped oscillation [V]')

(continues on next page)

290 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

plt.show()
1.0
=
=
2 0.5
]
s
=
I
=]
= 0.0
1]
=1
E
i
(]
—0.5 4

[
=
MJ
L
+a
(W, =

time [5]

The x- and y-labels are automatically placed so that they clear the x- and y-ticklabels. Compare
the plot below with that above, and note the y-label is to the left of the one above.

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(xl, y1x10000)

ax.set_xlabel('time [s]')
ax.set_ylabel('Damped oscillation [V]')

plt.show()

10000 ~

5000 ~

Damped oscillation [V]

—5000 ~

[
=
MJ
L
+a
(W, =

time [5]

If you want to move the labels, you can specify the labelpad keyword argument, where the
value is points (1/72”, the same unit used to specify fontsizes).

2.6. Text 291

Matplotlib, Release 3.3.0

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(xl, y1*10000)

ax.set_xlabel('time [s]')

ax.set_ylabel('Damped oscillation [V]', labelpad=18)

plt.show()

10000 4
=
=
p= 5000
]
o
E
0
=]
g 0~
b}
[=1
E
o
(]

—5000 H

T T T T T T
0 1 2 3 4 5
time [5]

Or, the labels accept all the Tezt keyword arguments, including position, via which we can
manually specify the label positions. Here we put the xlabel to the far left of the axis. Note,

that the y-coordinate of this position has no effect - to adjust the y-position we need to use
the labelpad kwarg.

fig, ax = plt.subplots(figsize=(5, 3))

fig.subplots_adjust(bottom=0.15, left=0.2)

ax.plot(xl, y1)

ax.set_xlabel('time [s]', position=(0., 1e6), horizontalalignment='left')
ax.set_ylabel('Damped oscillation [V]')

plt.show()

292 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.0 4
>
=
2 0.5
et
m
E
1]
o
= 0.0 4
@
(=R
E
[1+]
(]
_.[].5 .
T T T T T T
0 1 2 3 4 5
time [5]

All the labelling in this tutorial can be changed by manipulating the matplotiib. font_manager.
FontProperties method, or by named kwargs to set_zlabel

from matplotlib.font_manager import FontProperties

font = FontProperties()
font.set_family('serif')
font.set_name('Times New Roman')
font.set_style('italic')

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)

ax.plot(xl, y1)

ax.set_xlabel('time [s]', fontsize='large', fontweight='bold')
ax.set_ylabel('Damped oscillation [V]', fontproperties=font)

plt.show()

1.0 ~
=
[
S

= 0.5
s
S
LAy
=]

= 0.0+
F]
=}
E
m
(]

—0.5 4

T T T T T T
0 1 2 3 4 5
time [s]

2.6. Text 293

Matplotlib, Release 3.3.0

Finally, we can use native TeX rendering in all text objects and have multiple lines:

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.2, left=0.2)

ax.plot(x1l, np.cumsum(yl**2))

ax.set_xlabel('time [s] \n This was a long experiment')
ax.set_ylabel(r'$\int\ Y72\ dt\ \ [V"2 s]$")

plt.show()

0 1 2 3 4 5
time [5]
This was a long experiment

Titles

Subplot titles are set in much the same way as labels, but there is the loc keyword arguments
that can change the position and justification from the default value of loc=center.

fig, axs = plt.subplots(3, 1, figsize=(5, 6), tight_layout=True)
locs = ['center', 'left', 'right']
for ax, loc in zip(axs, locs):
ax.plot(xl, y1)
ax.set_title('Title with loc at '+loc, loc=loc)
plt.show()

294 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Title with loc at center

1.0+

0.5 A

0.0

—0.5 4

T
0 1 2 3 4

Title with loc at left
1.0 4

LR

0.5 A

0.0

—0.5 4

o -
=
P
[¥¥]
Y
(5,

Title with loc at right

1.0+

0.5 A

0.0

—0.5 4

o -
=
P
[¥¥]
Y
(5,

Vertical spacing for titles is controlled via rcParams["axes.titlepad"] (default: 6.0), which
defaults to 5 points. Setting to a different value moves the title.

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(top=0.8)

ax.plot(x1l, y1)

ax.set_title('Vertically offset title', pad=30)
plt.show()

2.6. Text 295

../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Vertically offset title

1.0 +

0.5 4

0.0

—0.5 4

Ticks and ticklabels

Placing ticks and ticklabels is a very tricky aspect of making a figure. Matplotlib does its
best to accomplish the task automatically, but it also offers a very flexible framework for
determining the choices for tick locations, and how they are labelled.

Terminology

Axes have an matplotlib.azis.Azis object for the ax.xaxis and ax.yaxis that contain the infor-
mation about how the labels in the axis are laid out.

The axis API is explained in detail in the documentation to azis.

An Axis object has major and minor ticks. The Axis has Azis.set_major_locator and Azis.
set_minor_locator methods that use the data being plotted to determine the location of major
and minor ticks. There are also Azis.set_major_ formatter and Azis.set_minor_formatter meth-
ods that format the tick labels.

Simple ticks

It often is convenient to simply define the tick values, and sometimes the tick labels, over-
riding the default locators and formatters. This is discouraged because it breaks interactive
navigation of the plot. It also can reset the axis limits: note that the second plot has the ticks
we asked for, including ones that are well outside the automatic view limits.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot(x1l, y1)

axs[1] .plot(x1l, y1)

axs[1] .xaxis.set_ticks(np.arange(0., 8.1, 2.))

plt.show()

296 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

?

[
=
MJ
L
+a

:

o -
MJ
+a
o -

We can of course fix this after the fact, but it does highlight a weakness of hard-coding the

ticks. This example also changes the format of the ticks:

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot(x1l, y1)

axs[1] .plot(x1l, y1)

ticks = np.arange(0., 8.1, 2.)

list
tickla
axs[1].
axs[1].
axs[1].

comprehension to get all tick labels...
= [f' ' for tick in ticks]
xaxis.set_ticks(ticks)
xaxis.set_ticklabels(tickla)
set_xlim(axs[0].get_x1im())

plt.show()

l_

o -
=
MJ
L
+a

f

T T
0.00 2.00 4.00

2.6. Text

297

Matplotlib, Release 3.3.0

Tick Locators and Formatters

Instead of making a list of all the tickalbels, we could have used matplotlibd.
ticker.StrMethodFormatter (new-style str.format() format string) or matplotlib.ticker.
FormatStrFormatter (old-style "%’ format string) and passed it to the ax.xaxis. A matplotlib.
ticker.StrMethodFormatter can also be created by passing a str without having to explicitly
create the formatter.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot(x1, y1)

axs[1] .plot(x1l, y1)

ticks = np.arange(0., 8.1, 2.)

axs[1] .xaxis.set_ticks(ticks)

axs[1] .xaxis.set_major_formatter(' D)
axs[1] .set_xlim(axs[0] .get_x1im())
plt.show()
l -]
04
T T T T T T
0 1 2 3 4 5
1 -
0 —
T T T
0.0 2.0 4.0

And of course we could have used a non-default locator to set the tick locations. Note we still
pass in the tick values, but the x-limit fix used above is not needed.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot(x1l, y1)

axs[1] .plot(x1l, y1)

locator = matplotlib.ticker.FixedLocator(ticks)

axs[1] .xaxis.set_major_locator(locator)

axs[1] .xaxis.set_major_formatter('+ °n)

plt.show()

298 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1 A
0 -
T T T T T T
0 1 2 3 4 5
l -
0
T T T
+0.0° +2.0° +4.0°

The default formatter is the matplotiib. ticker.MazNLocator called as ticker.MaxNLocator (self,
nbins='auto', steps=[1, 2, 2.5, 5, 10]) The steps keyword contains a list of multiples that
can be used for tick values. i.e. in this case, 2, 4, 6 would be acceptable ticks, as would 20,
40, 60 or 0.2, 0.4, 0.6. However, 3, 6, 9 would not be acceptable because 3 doesn’t appear in
the list of steps.

nbins=auto uses an algorithm to determine how many ticks will be acceptable based on how
long the axis is. The fontsize of the ticklabel is taken into account, but the length of the tick
string is not (because its not yet known.) In the bottom row, the ticklabels are quite large, so
we set nbins=4 to make the labels fit in the right-hand plot.

fig, axs = plt.subplots(2, 2, figsize=(8, 5), tight_layout=True)
for n, ax in enumerate(axs.flat):
ax.plot(x1*10., y1)

formatter = matplotlib.ticker.FormatStrFormatter (' ")

locator = matplotlib.ticker.MaxNLocator(nbins='auto', steps=[1, 4, 10])
axs[0, 1].xaxis.set_major_locator(locator)

axs[0, 1] .xaxis.set_major_formatter(formatter)

formatter = matplotlib.ticker.FormatStrFormatter (' ")
locator = matplotlib.ticker.AutoLocator()

axs[1, 0].xaxis.set_major_formatter(formatter)

axs[1, 0].xaxis.set_major_locator(locator)

formatter = matplotlib.ticker.FormatStrFormatter (' ")
locator = matplotlib.ticker.MaxNLocator (nbins=4)

axs[1, 1] .xaxis.set_major_formatter(formatter)

axs[1, 1].xaxis.set_major_locator(locator)

plt.show()

2.6. Text 299

Matplotlib, Release 3.3.0

1.0 A 1.0 4
0.5 1 0.5 4
0.0 1 0.0
—0.5 A —0.5 A
T T T T T T T T T T T T
0 10 20 30 40 50 0.0 10.0 20.0 30.0 40.0 50.0
1.0 1 1.0 4
0.5 1 0.5+
0.0 1 0.0 1
—0.5 1 —0.51
T T T T T T T T T T
0.0000010.0000@0.000060.00000640.000030.00000 0.00000 15.00000 30.00000 45.00000

Finally, we can specify functions for the formatter using matplotiib. ticker.FuncFormatter.
Further, like matplotlib. ticker.StrMethodFormatter, passing a function will automatically cre-
ate a matplotlidb. ticker.FuncFormatter.

def formatoddticks(x, pos):
"""Format odd tick positions.”"""
if x % 2:
return f' !
else:
return ''

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.plot(xl, y1)

locator = matplotlib.ticker.MaxNLocator(nbins=6)
ax.xaxis.set_major_formatter(formatoddticks)
ax.xaxis.set_major_locator(locator)

plt.show()

300 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

1.00 +

0.75 4

0.50 4

0.25 4

0.00 +

—0.25 +

—0.50 ~

T T T
1.00 3.00 5.00

Dateticks

Matplotlib can accept datetime.datetime and numpy.datetime64 objects as plotting arguments.
Dates and times require special formatting, which can often benefit from manual intervention.
In order to help, dates have special Locators and Formatters, defined in the matplotiib.dates
module.

A simple example is as follows. Note how we have to rotate the tick labels so that they don’t
over-run each other.

import datetime

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
base = datetime.datetime(2017, 1, 1, 0, 0, 1)
time = [base + datetime.timedelta(days=x) for x in range(len(x1))]

ax.plot(time, y1)
ax.tick_params(axis='x', rotation=70)
plt.show()

2.6. Text 301

https://docs.python.org/3/library/datetime.html#datetime.datetime

Matplotlib, Release 3.3.0

1.0~

0.5 4

0.0 4

—0.5 4

T T T T
o
g 7 F

N

Apr 2017

We can pass a format to matplotlib. dates.DateFormatter. Also note that the 29th and the next
month are very close together. We can fix this by using the dates.DayLocator class, which
allows us to specify a list of days of the month to use. Similar formatters are listed in the
matplotlib.dates module.

import matplotlib.dates as mdates

locator = mdates.DayLocator(bymonthday=[1, 15])
formatter = mdates.DateFormatter('’b ")

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)

ax.plot(time, y1)

ax.tick_params(axis='x', rotation=70)

plt.show()

1.0~

0.5 4

0.0

—0.5 4

Jan o,
fan g5
FE'ﬁG; i
Feb o5 |
""farm i
Mafig i
'q.ﬂrﬂ.l 4

302 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Legends and Annotations

* Legends: Legend guide
¢ Annotations: Annotations

Total running time of the script: (0 minutes 4.816 seconds)

2.6.2 Text properties and layout

Controlling properties of text and its layout with Matplotlib.

matplotlib. text. Text instances have a variety of properties which can be configured via key-
word arguments to set_title, set_zlabel, tezt, etc.

Property Value Type

alpha float

backgroundcolor any matplotlib color

bbox Rectangle prop dict plus key 'pad' which is a pad in points
clip box a matplotlib.transform.Bbox instance

clip on bool

clip path a Path instance and a Transform instance, a Patch

color any matplotlib color

family ['serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace’]
fontproperties FontProperties

horizontalalignment or | ['center' | 'right' | 'left’']

ha

label any string

linespacing float

multialignment ['left' | 'right' | 'center']

name or fontname string e.g., ['Sans' | 'Courier' | 'Helvetica' ...]

picker [None|float|bool|callable]

position (x,y)

rotation [angle in degrees | 'vertical' | 'horizontal']

size or fontsize [size in points | relative size, e.g., 'smaller’', 'x-large']
style or fontstyle ['normal' | 'italic' | 'oblique']

text string or anything printable with '%s’ conversion
transform Transform subclass

variant ['normal' | 'small-caps']

verticalalignment or va ['center' | 'top' | 'bottom' | 'baseline’]

visible bool

weight or fontweight ['normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
X float

y float

zorder any number

You can lay out text with the alignment arguments horizontalalignment, verticalalignment,
and multialignment. horizontalalignment controls whether the x positional argument for the
text indicates the left, center or right side of the text bounding box. verticalalignment controls
whether the y positional argument for the text indicates the bottom, center or top side of the
text bounding box. multialignment, for newline separated strings only, controls whether the

2.6. Text 303

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Matplotlib, Release 3.3.0

different lines are left, center or right justified. Here is an example which uses the tezt () com-
mand to show the various alignment possibilities. The use of transform=ax.transAxes through-
out the code indicates that the coordinates are given relative to the axes bounding box, with
(0, 0) being the lower left of the axes and (1, 1) the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

build a rectangle in azes coords
left, width = .25, .5

bottom, height = .25, .5

right = left + width

top = bottom + height

fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 11)

azes coordinates: (0, 0) is bottom left and (1, 1) is upper right
p = patches.Rectangle(

(left, bottom), width, height,

fill=False, transform=ax.transAxes, clip_on=False

)

ax.add_patch(p)

ax.text(left, bottom, 'left top',
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)

ax.text(left, bottom, 'left bottom',
horizontalalignment='left',
verticalalignment="'bottom',
transform=ax.transAxes)

ax.text(right, top, 'right bottom',
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes)

ax.text(right, top, 'right top',
horizontalalignment='right',
verticalalignment="'top',
transform=ax.transAxes)

ax.text(right, bottom, 'center top',
horizontalalignment='center',
verticalalignment="'top',
transform=ax.transAxes)

ax.text(left, 0.5%(bottom+top), 'right center',
horizontalalignment='right',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text(left, 0.5*%(bottom+top), 'left center',
horizontalalignment="'left',

(continues on next page)

304 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text(0.5*%(left+right), 0.5+(bottom+top), 'middle’,
horizontalalignment='center',
verticalalignment="'center',
fontsize=20, color='red',
transform=ax.transAxes)

ax.text(right, 0.5*(bottom+top), 'centered',
horizontalalignment='center',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text(left, top, 'rotated\nwith newlines',
horizontalalignment='center',
verticalalignment='center',
rotation=45,
transform=ax.transAxes)

ax.set_axis_off ()
plt.show()

D& -
Oy right bottom
g
o F right top
&
b
Blo o
= : ¥
S middle g
ol]
Sw il
[
left bottom
eff top center top

2.6. Text 305

Matplotlib, Release 3.3.0

2.6.3 Default Font

The base default font is controlled by a set of rcParams. To set the font for mathematical
expressions, use the rcParams beginning with mathtext (see mathtext).

rcParam usage

'font. List of either names of font or {'cursive', 'fantasy', 'monospace', 'sans',

family' 'sans serif', 'sans-serif', 'serif'}.

"font. The default style, ex 'normal', 'italic'.

style'

'font. Default variant, ex 'normal', 'small-caps' (untested)

variant'

'font. Default stretch, ex 'normal’', 'condensed' (incomplete)

stretch'

"font. Default weight. Either string or integer

weight'

'font. Default font size in points. Relative font sizes ('large', 'x-small') are com-

size' puted against this size.
The mapping between the family aliases ({'cursive', 'fantasy', 'monospace', 'sans', 'sans
serif', 'sans-serif', 'serif'}) and actual font names is controlled by the following rc-
Params:

family alias rcParam with mappings
'serif' 'font.serif'
'monospace’ 'font.monospace'
'fantasy' 'font.fantasy'
'cursive' 'font.cursive'
{'sans', 'sans serif', 'sans-serif'} 'font.sans-serif'

which are lists of font names.

Text with non-latin glyphs

As of v2.0 the default font, DejaVu, contains glyphs for many western alphabets, but not other
scripts, such as Chinese, Korean, or Japanese.

To set the default font to be one that supports the code points you need, prepend the font
name to 'font.family' or the desired alias lists

’matplotlib.rcParams['font.sans—serif‘] = ['Source Han Sans TW', 'sans-serif']

or set it in your .matplotlibrc file:

font.sans-serif: Source Han Sans TW, Arial, sans-serif

To control the font used on per-artist basis use the 'name', 'fontname' Or 'fontproperties'
kwargs documented above.

On linux, fc-list can be a useful tool to discover the font name; for example

306

Chapter 2. Tutorials

https://linux.die.net/man/1/fc-list

Matplotlib, Release 3.3.0

$ fc-list :lang=zh family

Noto to Sans Mono CJK TC,Noto Sans Mono CJK TC Bold
Noto Sans CJK TC,Noto Sans CJK TC Medium

Noto Sans CJK TC,Noto Sans CJK TC DemiLight

Noto Sans CJK KR,Noto Sans CJK KR Black

Noto Sans CJK TC,Noto Sans CJK TC Black

Noto Sans Mono CJK TC,Noto Sans Mono CJK TC Regular
Noto Sans CJK SC,Noto Sans CJK SC Light

lists all of the fonts that support Chinese.

2.6.4 Annotations

Annotating text with Matplotlib.

Table of Contents

* Annotations

- Basic annotation

- Advanced Annotations
* Annotating with Text with Box
* Annotating with Arrow
* Placing Artist at the anchored location of the Axes
* Using Complex Coordinates with Annotations
* Using ConnectionPatch

- Advanced Topics

* Zoom effect between Axes

* Define Custom BoxStyle

Basic annotation

The uses of the basic tezt () will place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate () method provides helper
functionality to make annotations easy. In an annotation, there are two points to consider: the
location being annotated represented by the argument xy and the location of the text xytext.
Both of these arguments are (x, y) tuples.

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coor-
dinates. There are a variety of other coordinate systems one can choose - you can specify
the coordinate system of xy and xytext with one of the following strings for xycoords and
textcoords (default is ‘data’)

2.6. Text 307

Matplotlib, Release 3.3.0

2.0

1.5 4 local max

10+

0.5 4

0.0 4

-1.0 4

-1.5

-2.0

Fig. 23: Annotation Basic

argument coordinate system

"figure points’ points from the lower left corner of the figure
"figure pixels’ pixels from the lower left corner of the figure
"figure fraction’ | (0, 0) is lower left of figure and (1, 1) is upper right
‘axes points’ points from lower left corner of axes

‘axes pixels’ pixels from lower left corner of axes

"axes fraction’ (0, 0) is lower left of axes and (1, 1) is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate('local max', xy=(3, 1), xycoords='data',
xytext=(0.8, 0.95), textcoords='axes fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='right', verticalalignment='top',

)

For physical coordinate systems (points or pixels) the origin is the bottom-left of the figure or
axes.

Optionally, you can enable drawing of an arrow from the text to the annotated point by giving
a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key | description

width the width of the arrow in points

frac the fraction of the arrow length occupied by the head

headwidth the width of the base of the arrow head in points

shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, €.9., facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to 'data’). For a
polar axes, this is in (theta, radius) space. The text in this example is placed in the fractional
figure coordinate system. matplotlib. tezt. Text keyword arguments like horizontalalignment,
verticalalignment and fontsize are passed from annotate to the Text instance.

308 Chapter 2. Tutorials

../../gallery/pyplots/annotation_basic.html

Matplotlib, Release 3.3.0

a polar annotation 270°

Fig. 24: Annotation Polar

For more on all the wild and wonderful things you can do with annotations, including fancy ar-
rows, see Advanced Annotations and /gallery/text labels and annotations/annotation demo.

Do not proceed unless you have already read Basic annotation, tezt() and annotate()!

Advanced Annotations

Annotating with Text with Box

Let’s start with a simple example.

o af - 5
2 " |Sample B |

Fig. 25: Annotate Text Arrow

text takes a bbox keyword argument, which draws a box around the text:

t = ax.text(
0, O, "Direction", ha="center", va='"center", rotation=45, size=15,
bbox=dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2))

The patch object associated with the text can be accessed by:

2.6. Text

309

../../gallery/pyplots/annotation_polar.html
../../gallery/userdemo/annotate_text_arrow.html

Matplotlib, Release 3.3.0

’bb = t.get_bbox_patch() ‘

The return value is a FancyBbozPatch; patch properties (facecolor, edgewidth, etc.) can be
accessed and modified as usual. FancyBbozPatch.set_bozstyle sets the box shape:

’bb.set_boxstyle "rarrow", pad=0.6) ‘

The arguments are the name of the box style with its attributes as keyword arguments. Cur-
rently, following box styles are implemented.

Class Name Attrs

Circle circle pad=0.3

DArrow darrow pad=0.3

LArrow larrow pad=0.3

RArrow rarrow pad=0.3

Round round pad=0.3,rounding size=None
Round4 round4 pad=0.3,rounding size=None
Roundtooth | roundtooth | pad=0.3,tooth size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

round

square

g1 |2
-
O
S
z ai |S
o — =]
(o] (o] o
3 jaf &
>

Fig. 26: Fancybox Demo

Note that the attribute arguments can be specified within the style name with separating
comma (this form can be used as “boxstyle” value of bbox argument when initializing the text
instance)

bb.set_boxstyle("rarrow,pad=0.6")

310 Chapter 2. Tutorials

../../gallery/shapes_and_collections/fancybox_demo.html

Matplotlib, Release 3.3.0

Annotating with Arrow

annotate draws an arrow connecting two points in an axes:

ax.annotate("Annotation",
xy=(x1, y1), xycoords='data',
xytext=(x2, y2), textcoords='offset points',
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in
textcoords. Often, the annotated point is specified in the data coordinate and the annotating
text in offset points. See annotate for available coordinate systems.

An arrow connecting xy to xytext can be optionally drawn by specifying the arrowprops ar-
gument. To draw only an arrow, use empty string as the first argument.

ax.annotate("",
xy=(0.2, 0.2), xycoords='data',
xytext=(0.8, 0.8), textcoords='data',
arrowprops=dict (arrowstyle="->",
connectionstyle="arc3"),

)

1.0

0.8 1

0.6

0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 27: Annotate Simple01

The arrow is drawn as follows:

1. A path connecting the two points is created, as specified by the connectionstyle param-
eter.

2. The path is clipped to avoid patches patchA and patchB, if these are set.
3. The path is further shrunk by shrinkA and shrinkB (in pixels).
4. The path is transmuted to an arrow patch, as specified by the arrowstyle parameter.

The creation of the connecting path between two points is controlled by connectionstyle key
and the following styles are available.

Name Attrs
angle | angleA=90,angleB=0,rad=0.0
angle3 | angleA=90,angleB=0

arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

2.6. Text 311

../../gallery/userdemo/annotate_simple01.html

Matplotlib, Release 3.3.0

connect

shrink

cip

mutate

/’

Fig. 28: Annotate Explain

Note that "3” in angle3 and arc3 is meant to indicate that the resulting path is a quadratic
spline segment (three control points). As will be discussed below, some arrow style options
can only be used when the connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below.
(Warning: The behavior of the bar style is currently not well defined, it may be changed

in the future).

angle3, arc3, angle, arc, bar,
angleA=90, rad=0. angleA=-90, angleA=-90, fraction=0.3
angleB=0 angleB=180, angleB=0, /’\\
: rad=0 . armA=30, . .
) armB=30, | p
J/ rad=0 &
-« . .
angle3, arc3, angle, arc, bar,
angleA=0, rad=0.3 angleA=-90, angleA=-90, fraction=-0.3
angleB=90 angleB=180, angleB=0,
— rad=5 . armA=30, . \

/" armB=30, | N

/ / rad=5 - -

¥ "4 ,,/

. . e . .»

arc3, angle, arc, bar,
rad=-0.3 angleA=-90, angleA=-90, angle=180,
angleB=10, angleB=0, fraction=-0.2
rad=5 . armA=0, . .
armB=40,
rad=0
. “ .< PaP— .

Fig. 29: Connectionstyle Demo

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, accord-

ing to the given arrowstyle.

312

Chapter 2. Tutorials

../../gallery/userdemo/annotate_explain.html
../../gallery/userdemo/connectionstyle_demo.html

Matplotlib, Release 3.3.0

Name Attrs

- None
-> head length=0.4,head width=0.2
-[widthB=1.0,lengthB=0.2,angleB=None

|- widthA=1.0,widthB=1.0
-> head length=0.4,head width=0.2

<- head length=0.4,head width=0.2
<> head length=0.4,head width=0.2
<|- head length=0.4,head width=0.2

<|-1> | head length=0.4,head width=0.2

fancy | head length=0.4,head width=0.4,tail width=0.4
simple | head length=0.5head width=0.5,tail width=0.2
wedge | tail width=0.3,shrink factor=0.5

[|—® [<F>]+*—®
~]—e® [—e®
[—® H—®
[1>]—® [fancy | =— @
—@ [simpie]— @
=—® [wedge]— @
<1—e® e

Fig. 30: Fancyarrow Demo

Some arrowstyles only work with connection styles that generate a quadratic-spline segment.
They are fancy, simple, and wedge. For these arrow styles, you must use the "angle3” or "arc3”
connection style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

1.0
0.8 1 Test
0.6
0.4 1

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 31: Annotate Simple(02

As with tezt, a box around the text can be drawn using the bbox argument.

By default, the starting point is set to the center of the text extent. This can be adjusted with

2.6. Text 313

../../gallery/text_labels_and_annotations/fancyarrow_demo.html
../../gallery/userdemo/annotate_simple02.html

Matplotlib, Release 3.3.0

1.0

0.8

0.6 4

0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 32: Annotate Simple03

relpos key value. The values are normalized to the extent of the text. For example, (0, 0)
means lower-left corner and (1, 1) means top-right.

1.0
051 Test

0.6 1
0.4 1

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 33: Annotate Simple04

Placing Artist at the anchored location of the Axes

There are classes of artists that can be placed at an anchored location in the Axes. A common
example is the legend. This type of artist can be created by using the 0ffsetBoz class. A
few predefined classes are available in matplotlib.offsetboz and in mpl_toolkits.azes_gridl.
anchored_artists

from matplotlib.offsetbox import AnchoredText
at = AnchoredText("Figure la",
prop=dict(size=15), frameon=True,
loc="'upper left',
)
at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel
size during the time of creation. For example, If you want to draw a circle with fixed size
of 20 pixel x 20 pixel (radius = 10 pixel), you can utilize AnchoredDrawingArea. The instance
is created with a size of the drawing area (in pixels), and arbitrary artists can added to the
drawing area. Note that the extents of the artists that are added to the drawing area are not
related to the placement of the drawing area itself. Only the initial size matters.

314 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple03.html
../../gallery/userdemo/annotate_simple04.html

Matplotlib, Release 3.3.0

1.0

0.6 4

0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 34: Anchored Box01

from mpl_toolkits.axes_gridl.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, O,
loc='upper right', pad=0., frameon=False)
pl = Circle((10, 10), 10)
ada.drawing_area.add_artist(pl)
p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have a transform set (it will be
overridden) and the dimensions of those artists are interpreted as a pixel coordinate, i.e., the
radius of the circles in above example are 10 pixels and 5 pixels, respectively.

1.0

0.8 1
0.6
0.4 4

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 35: Anchored Box02

Sometimes, you want your artists to scale with the data coordinate (or coordinates
other than canvas pixels). You can use AnchoredAuxTransformBox class. This is similar to
AnchoredDrawingArea except that the extent of the artist is determined during the drawing
time respecting the specified transform.

from mpl_toolkits.axes_gridl.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc='upper left')
el = Ellipse((0, 0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponding to 0.1 and 0.4 in
data coordinates and will be automatically scaled when the view limits of the axes change.

As in the legend, the bbox to anchor argument can be set. Using the HPacker and VPacker,
you can have an arrangement(?) of artist as in the legend (as a matter of fact, this is how the
legend is created).

2.6. Text 315

../../gallery/userdemo/anchored_box01.html
../../gallery/userdemo/anchored_box02.html

Matplotlib, Release 3.3.0

1.0
as“.‘
0.6 -

0.4 4

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 36: Anchored Box03

Test: o =

1.0

0.8 4

0.6

0.4 1

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 37: Anchored Box04

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

Using Complex Coordinates with Annotations

The Annotation in matplotlib supports several types of coordinates as described in Basic an-
notation. For an advanced user who wants more control, it supports a few other options.

1. A Transform instance. For example,

’ax.annotate(”Test", xy=(0.5, 0.5), xycoords=ax.transAxes)

is identical to

’ax.annotate(”Test", xy=(0.5, 0.5), xycoords="axes fraction")

This allows annotating a point in another axes:

axl, ax2 = subplot(121), subplot(122)

ax2.annotate("Test", xy=(0.5, 0.5), xycoords=axl.transData,
xytext=(0.5, 0.5), textcoords=ax2.transData,
arrowprops=dict (arrowstyle="->"))

2. An Artist instance. The xy value (or xytext) is interpreted as a fractional coordinate of
the bbox (return value of get window extent) of the artist:

anl = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",
va="center", ha="center",
bbox=dict (boxstyle="round", fc="w"))
an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=anl, # (1, 0.5) of the anl's bbox

(continues on next page)

316 Chapter 2. Tutorials

../../gallery/userdemo/anchored_box03.html
../../gallery/userdemo/anchored_box04.html

Matplotlib, Release 3.3.0

(continued from previous page)

xytext=(30, 0), textcoords="offset points",
va="center", ha="left",

bbox=dict (boxstyle="round", fc="w"),
arrowprops=dict (arrowstyle="->"))

1.0

0.8

0.4 1
0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 38: Annotation with Simple Coordinates

Note that you must ensure that the extent of the coordinate artist (anl in above example)
is determined before an2 gets drawn. Usually, this means that an2 needs to be drawn
after anl.

3. A callable object that takes the renderer instance as single argument, and returns either
a Transform Or a BbozBase. The return value is then handled as in (1), for transforms, or
in (2), for bboxes. For example,

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=anl,
xytext=(30, 0), textcoords="offset points")

is identical to:

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=anl.get_window_extent,
xytext=(30, 0), textcoords="offset points")

4. A pair of coordinate specifications - the first for the x-coordinate, and the second is for
the y-coordinate; e.g.

annotate("Test", xy=(0.5, 1), xycoords=("data", "axes fraction"))

Here, 0.5 is in data coordinates, and 1 is in normalized axes coordinates. Each of the
coordinate specifications can also be an artist or a transform. For example,

1.0 }
0.8
0.6 |

0.4

0.2 1

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 39: Annotation with Simple Coordinates 2

5. Sometimes, you want your annotation with some ”offset points”, not from the annotated
point but from some other point. tezt.0ffsetFromis a helper for such cases.

You may take alook at this example /gallery/text labels and annotations/annotation demo.

2.6. Text 317

../../gallery/userdemo/annotate_simple_coord01.html
../../gallery/userdemo/annotate_simple_coord02.html

Matplotlib, Release 3.3.0

1.0
0.8 4
0.6

0.4
/

0.2 1

0.0

0.0 0:2 0.‘4 0.‘6 0.‘8 1.0
Fig. 40: Annotation with Simple Coordinates 3
Using ConnectionPatch

ConnectionPatch is like an annotation without text. While annotate is sufficient in most situ-
ations, ConnectionPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch

xy = (0.2, 0.2)

con = ConnectionPatch(xyA=xy, coordsA=axl.transData,
xyB=xy, coordsB=ax2.transData)

fig.add_artist(con)

The above code connects point xy in the data coordinates of ax1 to point xy in the data coor-
dinates of ax2. Here is a simple example.

1.0 0.5

0.8 ° 0.4
0.6 0.3
0.4 0.2 r

L —T

02{ & — | 0.1

0.0

T T T T 0.0 T T T T
00 02 04 06 08 10 00 01 02 03 04 05

Fig. 41: Connect Simple01

Here, we added the ConnectionPatch to the figure (with add_artist) rather than to either
axes: this ensures that it is drawn on top of both axes, and is also necessary if using con-
strained layout for positioning the axes.

Advanced Topics

Zoom effect between Axes

mpl_toolkits.axes_gridl.inset_locator defines some patch classes useful for interconnecting
two axes. Understanding the code requires some knowledge of Matplotlib’s transform system.

Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in the
following forms.:

318 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple_coord03.html
../../gallery/userdemo/connect_simple01.html

Matplotlib, Release 3.3.0

10 10

0.8 4 0.8 4
0.6 4 0.6 4
0.4 4 0.4 4
0.2 4 0.2 4

0.0 T T 0.0, T T T
0.0D/J.ZSMS 1.08°2.00 2.25 75 3.00
10

0.8 4

0.6 4

0.4 4

0.2 4

0.0 T T T T
0 1 2 3 4 5

Fig. 42: Axes Zoom Effect

def __call__(self, x0, yO, width, height, mutation_size,
aspect_ratio=1.):
Given the location and size of the boxz, return the path of
the box around <t.

- *x0*, *y0*, *width*, *height* : location and size of the bozx
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ratio for the mutation.

rr

path = ...

return path

Here is a complete example.

T <est

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 43: Custom Boxstyle01

Similarly, you can define a custom ConnectionStyle and a custom ArrowStyle. See the source
code of 1ib/matplotlib/patches.py and check how each style class is defined.

2.6.5 Writing mathematical expressions

An introduction to writing mathematical expressions in Matplotlib.

2.6. Text 319

../../gallery/subplots_axes_and_figures/axes_zoom_effect.html
../../gallery/userdemo/custom_boxstyle01.html

Matplotlib, Release 3.3.0

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of
dollar signs ($).

Note that you do not need to have TeX installed, since Matplotlib ships its own TeX expression
parser, layout engine, and fonts. The layout engine is a fairly direct adaptation of the layout
algorithms in Donald Knuth’s TeX, so the quality is quite good (matplotlib also provides a
usetex option for those who do want to call out to TeX to generate their text (see Text rendering
With LaTeX).

Any text element can use math text. You should use raw strings (precede the quotes with an
'r'), and surround the math text with dollar signs ($), as in TeX. Regular text and mathtext
can be interleaved within the same string. Mathtext can use DejaVu Sans (default), DejaVu
Serif, the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed to blend well
with Times), or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing Matplotlib with style sheets and
rcParams)

Here is a simple example:

plain text
plt.title('alpha > beta')

produces “alpha > beta”.
Whereas this:

math text
plt.title(r'$\alpha > \beta$')

produces "a > 8”.

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to
display monetary values, e.g., “$100.00”, if a single dollar sign is present in the entire string,
it will be displayed verbatim as a dollar sign. This is a small change from regular TeX, where
the dollar sign in non-math text would have to be escaped ('\$’).

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside
does not. In particular, characters such as:

#$768~_ "\LFPNCON\]

have special meaning outside of math mode in TeX. Therefore, these characters will behave
differently depending on rcParams["text.usetex"] (default: False). See the usetex tutorial for
more information.

Subscripts and superscripts

To make subscripts and superscripts, use the '_' and '~' symbols:

r'$\alpha_i > \beta_i$'

a; > B

320 Chapter 2. Tutorials

http://www.stixfonts.org/
../../tutorials/introductory/customizing.html?highlight=text.usetex#a-sample-matplotlibrc-file

braces {...}:

Matplotlib, Release 3.3.0
To display multi-letter subscripts or superscripts correctly, you should put them in curly
r'$\alpha”

> \beta_ $!

azc > Bic

Some symbols automatically put their sub/superscripts under and over the operator. For
example, to write the sum of z; from 0 to oo, you could do:
r'$\sum_{i=0}"\infty x_i$'

00
PE
=0

Fractions, binomials, and stacked numbers

Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{} and
\genfrac{}H}{}{}{}{} commands, respectively:
r'$\frac \binom \genfrac $'
produces
3/3
- 4
’ (4> 03
Fractions can be arbitrarily nested:
r'$\frac{5 - \frac } $!
produces
5_1

4

Note that special care needs to be taken to place parentheses and brackets around fractions.
Doing things the obvious way produces brackets that are too small:
r'$(\frac{5 - \frac H4PS$!

4
The solution is to precede the bracket with \left and \right to inform the parser that those
brackets encompass the entire object.:
r'$\left (\frac{5 - \frac

}{4N\right)$'

r_1
()
Radicals

Radicals can be produced with the \sqrt[1{} command. For example:
2.6. Text

321

Matplotlib, Release 3.3.0

r'$\sqrt{2/$'

V2

Any base can (optionally) be provided inside square brackets.
be a simple expression, and can not contain layout commands such as fractions or

sub/superscripts:

Note that the base must

r'$\sqrt[3]{z}$'

Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using rcParams["mathtext.default"] (default: 'it'). This
is useful, for example, to use the same font as regular non-math text for math text, by setting

it to regular.

To change fonts, e.g., to write “sin” in a Roman font, enclose the text in a font command:

r'$s(t) = \mathcal{AF \mathrm (2 \omega t)$'

s(t) = Asin(2wt)

More conveniently, many commonly used function names that are typeset in a Roman font
have shortcuts. So the expression above could be written as follows:

r'$s(t) = \mathcal{A}\sin(2 \omega t)$'

s(t) = Asin(2wt)

Here ”s” and ”t” are variable in italics font (default), “sin” is in Roman font, and the amplitude
”A” is in calligraphy font. Note in the example above the calligraphy A is squished into the
sin. You can use a spacing command to add a little whitespace between them:

r's(t) = \mathcal \/\sin(2 \omega t)'

s(t) = A sin(2wt)

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter
\mathcal{CALLIGRAPHY} | CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

322

Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=mathtext.default#a-sample-matplotlibrc-file
http://www.stixfonts.org/

Matplotlib, Release 3.3.0

Command Result
\mathbb{blackboard} <O IXON
\mathrm{\mathbb{blackboard}} | <O TxO\
\mathfrak{Fraktur} Fraktur
\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also five global “font sets” to choose from, which are selected using the mathtext.
fontset parameter in matplotlibrc.

dejavusans: DejaVu Sans

Rﬁa,; sin (27 fx;) (2.1)
dejavuserif: DejaVu Serif

Rﬁa,; sin (27 fx;) (2.2)
cm: Computer Modern (TeX)

Rﬁai sin (27 fx;) (2.3)

stix: STIX (designed to blend well with Times)

R[] aisin (2 fz;) (2.4)
stixsans: STIX sans-serif
RHCM sin (27 fx;) (2.5)

Additionally, you can use \mathdefault{...} or its alias \mathregular{...} to use the font used
for regular text outside of mathtext. There are a number of limitations to this approach, most
notably that far fewer symbols will be available, but it can be useful to make math expressions
blend well with other text in the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to
use, and should be considered an experimental feature for patient users only. By setting
rcParams["mathtext.fontset"] (default: 'dejavusans') to custom, you can then set the following
parameters, which control which font file to use for a particular set of math characters.

2.6. Text 323

../../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Parameter Corresponds to

mathtext.it | \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf | \mathbf{} bold italic

mathtext.cal | \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-
written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters,
such as Greek. If you want to use a math symbol that is not contained in your custom fonts,
you can set rcParams["mathtext.fallback"] (default: 'cm') to either 'cm', 'stix' or 'stixsans'
which will cause the mathtext system to use characters from an alternative font whenever a
particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may
not have glyphs in the correct place for mathtext.

Accents

An accent command may precede any symbol to add an accent above it. There are long and
short forms for some of them.

Command Result
\acute aor\'a | a
\bar a a
\breve a a
\ddot aor\''a | d
\dot aor\.a a
\grave aor\-a | a
\hat a or \"a a
\tilde aor\-~a | a
\vec a a
\overline{abc} | abc

In addition, there are two special accents that automatically adjust to the width of the symbols
below:

Command Result
\widehat{xyz} Yz

\widetilde{xyz} | zyz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following
\imath is used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

=~
>

324 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

« \alpha | B \beta X \chi 0 \delta f \digamma € \epsilon
n \eta Y \gamma | 1 \iota K \kappa A \lambda B \mu

» \nu w \omega | ¢ \phi o \pi Y \psi p \rho

O \sigma | T \tau O \theta | U \upsilon | € \varepsilon | ¥ \varkappa
@ \varphi | @ \varpi | @ \varrho | ¢ \varsigma | O \vartheta € \xi

C \zeta

Upper-case Greek

A \Delta | I' \Gamma A Q ® \Phi IT\Pi | W\Psi | 2
\Lambda \Omega \Sigma
O \Theta | Y 2 \Xi O \mho v
\Upsilon \nabla
Hebrew

| O\aleph | [J\beth | [J\daleth | [J\gimel [[|

Delimiters
/7 [[I I \Uparrow | || \Vert \backslash
\Downarrow

l (\langle [\1ceil [\1floor [J \1lcorner | [] \lrcorner
\downarrow

) \rangle] \rceil | \rfloor 0 \ulcorner | T \uparrow | [] \urcorner

{\d F\} 11
\vert \ |

Big symbols

0 \bigcap | [J \bigcup [\bigodot | [] \bigoplus | [] \bigotimes | [] \biguplus
0 \bigvee | [] \bigwedge | [[\coprod | [\int [] \oint IT \prod
> \sum

Standard function names

2.6. Text 325

Matplotlib, Release 3.3.0

Pr \pr arccos arcsin arctan arg \arg Cos \cos
\arccos \arcsin \arctan
cosh cot \cot coth \coth csc \csc deg \deg | det\det
\cosh
dim \dim exp \exp gcd \gcd hom \hom inf \inf ker \ker
Ig \1g lim \1im liminf limsup In \1n log \1log
\liminf \limsup
max \max | min \min sec \sec sin \sin sinh sup
\sinh \sup
tan \tan tanh \tanh
Binary operation and relation symbols
[0 \Bumpeq 0 \Cap 0 \Cup = \Doteq
[0 \Join [1 \Subset [\Supset IF \Vdash
lIF \Vvdash =~ \approx [\approxeq * \ast
0 \asymp 9 \backepsilon — \backsim [\backsimeq
[] \barwedge [0 \because [] \between O \bigcirc

V \bigtriangledown

A \bigtriangleup

<« \blacktriangleleft

» \blacktriangleright

1 \bot [0 \bowtie B \boxdot B \boxminus

H \boxplus K \boxtimes e \bullet 0 \bumpeq

N \cap - \cdot o \circ 0 \circeq

= \coloneq [0 \cong U \cup 0 \curlyeqprec

0 \curlyeqgsucc [\curlyvee [\curlywedge T \dag

— \dashv ¥ \ddag ¢ \diamond + \div

[0 \divideontimes = \doteq = \doteqdot + \dotplus

[0 \doublebarwedge [0 \eqcirc =: \eqcolon = \egsim

[\egslantgtr [\egslantless = \equiv = \fallingdotseq

00 \frown = \geq 0 \geqq [\gegslant

0 \eg U \ggg [\gnapprox 0 \gneqq

0 \gnsim [0 \gtrapprox 0 \gtrdot 0 \gtreqless

[\gtreqqless [\gtrless 0 \gtrsim € \in

[0 \intercal [0 \leftthreetimes | < \leq 0 \leqq

[0 \legslant [0 \lessapprox [\lessdot 0 \lesseqgtr

[0 \lesseqqgtr 0 \lessgtr [\lesssim 0\11

0\111 [0 \lnapprox [\1neqq 0 \lnsim

0 \1ltimes [\mid F \models ¥ \mp

[¥- \nVDash I \nVdash # \napprox 0 \ncong

\ne # \neq # \neq Z \nequiv

Z \ngeq #* \ngtr 3 \ni % \nleq

£ \nless } \omid ¢ \notin ¥ \nparallel

0 \nprec # \nsim ¢ \nsubset € \nsubseteq

0 \nsucc D \nsupset 2 \nsupseteq 0 \ntriangleleft

[\ntrianglelefteq | [] \ntriangleright | [] \ntrianglerighteq # \nvDash

t# \nvdash © \odot © \ominus ® \oplus

@ \oslash ® \otimes [\paraliel 0 \perp

[0 \pitchfork + \pm 0 \prec [\precapprox

[0 \preccurlyeq [\preceq [\precnapprox [\precnsim

[0 \precsim x \propto 0 \rightthreetimes = \risingdotseq

[\rtimes ~ \sim = \simeq / \slash

Continued on next page

326 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Table 2 — continued from previous page

[\smile M \sqcap LI \sqcup C \sqgsubset

C \sgsubset C \sgsubseteq 3 \sqsupset 3 \sqgsupset

= \sqgsupseteq [\star C \subset C \subseteq

[0 \subseteqq [0 \subsetneq [0 \subsetneqq 0 \succ

] \succapprox [0 \succcurlyeq [\succeq [\succnapprox
[0 \succnsim [0 \succsim D \supset =2 \supseteq

[\supseteqq

[\supsetneq

[l \supsetneqq

[] \therefore

X \times T \top <] \triangleleft 0 \trianglelefteq
0 \triangleq > \triangleright | [] \trianglerighteq W \uplus

F \vDash « \varpropto [\vartriangleleft 0 \vartriangleright
F \vdash V \vee [\veebar A \wedge

0 \wr

Arrow symbols

U \Downarrow

= \Leftarrow

<= \Leftrightarrow

& \Lleftarrow

= = = \Longrightarrow | 9 \Lsh

\Longleftarrow \Longleftrightarrow

7 \Nearrow N \Nwarrow = \Rightarrow = \Rrightarrow

P \Rsh Y \Searrow ¢ \Swarrow I \Uparrow

0 \Updownarrow U \circlearrowleft | U "
\circlearrowright \curvearrowleft

~ «- \dashleftarrow -»> \dashrightarrow 1l \downarrow

\curvearrowright

A | \downharpoonleft | < \hookleftarrow

\downdownarrows \downharpoonright

o « \leadsto < \leftarrow ~ \leftarrowtail

\hookrightarrow

- “ \leftharpoonup Z \leftleftarrows o

\leftharpoondown \leftrightarrow

S = w =

\leftrightarrows | \leftrightharpoons | \leftrightsquigarrow \leftsquigarrow

— — +— \longmapsto —

\longleftarrow \longleftrightarrow \longrightarrow

< \looparrowleft

+ \looparrowright

~ \mapsto

0 \multimap

< \nLeftarrow

< \nLeftrightarrow

\nRightarrow

/7 \nearrow

<+ \nleftarrow

« \nleftrightarrow

-+ \nrightarrow

N \nwarrow

— \rightarrow

» \rightarrowtail

—

—_

\rightharpoondown \rightharpoonup
2 2 \rightleftarrows | = =
\rightleftarrows \rightleftharpoons | \rightleftharpoons
3 3 ~ \rightsquigarrow | \ \searrow
\rightrightarrows| \rightrightarrows
¢ \swarrow — \to “« -
\twoheadleftarrow \twoheadrightarrow

T \uparrow

1 \updownarrow

T \updownarrow

1 \upharpoonleft

r
\upharpoonright

1T \upuparrows

2.6. Text

327

Matplotlib, Release 3.3.0

Miscellaneous symbols

$\$ A\ap d \Finv O \Game

0 \Im q9\p] \Re §\s

£ \angle " \backprime [0 \bigstar B \blacksquare
A \blacktriangle | v \blacktriangledown | [] \cdots v \checkmark
® \circledR [0 \circleds & \clubsuit [\complement
© \copyright [0 \ddots ¢ \diamondsuit 0 \ell

0 \emptyset 0 \eth 3 \exists b \flat

V \forall h \hbar O \heartsuit h \hslash

Jff \iiint Jf \iint 1 \imath oo \infty

J \jmath ... \ldots [J \measuredangle | % \natural

= \neg A \nexists [0 \oiiint d \partial
"\prime # \sharp & \spadesuit [\sphericalangle
B \ss v \triangledown [0 \varnothing A \vartriangle
[0 \vdots O \wp ¥ \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols
in the STIX fonts), Unicode characters can also be used:

r'$\u23ce$’

Example

Here is an example illustrating many of these features in context.

a; > Bi

1.00 4

0.75 4 .
Asin(2w
0.50 1
0.25 1

0.00 4

volts (mv)

—0.25
o]
~0.50
Z Xi
~0.75 4 i=0

—1.00 A

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
time (s)

Fig. 44: Pyplot Mathtext

2.6.6 Typesetting With XeLaTeX/LuaLaTeX

How to typeset text with the pgf backend in Matplotlib.

Using the pgf backend, Matplotlib can export figures as pgf drawing commands that can
be processed with pdflatex, xelatex or lualatex. XelLaTeX and LualaTeX have full Unicode

328 Chapter 2. Tutorials

../../gallery/pyplots/pyplot_mathtext.html

Matplotlib, Release 3.3.0

support and can use any font that is installed in the operating system, making use of ad-
vanced typographic features of OpenType, AAT and Graphite. Pgf pictures created by plt.
savefig('figure.pgf') can be embedded as raw commands in LaTeX documents. Figures can
also be directly compiled and saved to PDF with plt.savefig('figure.pdf') by switching the
backend

’matplotlib.use('pgf')

or by explicitly requesting the use of the pgf backend

’plt.savefig('figure.pdf‘, backend="pgf ')

or by registering it for handling pdf output

from matplotlib.backends.backend_pgf import FigureCanvasPgf
matplotlib.backend_bases.register_backend('pdf', FigureCanvasPgf)

The last method allows you to keep using regular interactive backends and to save xelatex,
lualatex or pdflatex compiled PDF files from the graphical user interface.

Matplotlib’s pgf support requires a recent LaTeX installation that includes the TikZ/PGF pack-
ages (such as TeXLive), preferably with XeLaTeX or LualLaTeX installed. If either pdftocairo
or ghostscript is present on your system, figures can optionally be saved to PNG images as
well. The executables for all applications must be located on your PATH.

rcParams that control the behavior of the pgf backend:

Parameter Documentation

pgf.preamble | Lines to be included in the LaTeX preamble

pgf.rcfonts Setup fonts from rc params using the fontspec package
pgf.texsystem | Either "xelatex” (default), "lualatex” or "pdflatex”

Note: TeX defines a set of special characters, such as:

#&L8~_ "\ {2}

Generally, these characters must be escaped correctly. For convenience, some characters (_,
~, %) are automatically escaped outside of math environments.

Multi-Page PDF Files

The pgf backend also supports multipage pdf files using PdfPages

from matplotlib.backends.backend_pgf import PdfPages
import matplotlib.pyplot as plt

with PdfPages('multipage.pdf', metadata={'author': 'Me'}) as pdf:
figl, axl = plt.subplots()

axl.plot([1, 5, 31)
pdf .savefig(figl)

fig2, ax2 = plt.subplots()

(continues on next page)

2.6. Text 329

http://www.tug.org
http://www.tug.org/texlive/

Matplotlib, Release 3.3.0

(continued from previous page)

ax2.plot([1, 5, 31)
pdf .savefig(fig2)

Font specification

The fonts used for obtaining the size of text elements or when compiling figures to
PDF are usually defined in the rcParams. You can also use the LaTeX default Computer
Modern fonts by clearing the lists for rcParams["font.serif"] (default: ['DejaVu Serif',
'Bitstream Vera Serif', 'Computer Modern Roman', 'New Century Schoolbook', 'Century
Schoolbook L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L', 'Times New
Roman', 'Times', 'Palatino', 'Charter', 'serif']), rcParams["font.sans-serif"] (default:
['DejaVu Sans', 'Bitstream Vera Sans', 'Computer Modern Sans Serif', 'Lucida Grande',

'Verdana', 'Geneva', 'Lucid', 'Arial', 'Helvetica', 'Avant Garde', 'sans-serif']) or
rcParams["font.monospace"] (default: ['DejaVu Sans Mono', 'Bitstream Vera Sans Mono',
'Computer Modern Typewriter', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier',

'Fixed', 'Terminal', 'monospace']). Please note that the glyph coverage of these fonts is
very limited. If you want to keep the Computer Modern font face but require extended
Unicode support, consider installing the Computer Modern Unicode fonts CMU Serif, CMU
Sans Serif, etc.

When saving to .pgf, the font configuration Matplotlib used for the layout of the figure is
included in the header of the text file.

mmnn

mwmn

import matplotlib.pyplot as plt
plt.rcParams.update ({

"font.family": "serif",
"font.serif": [J, # use later default serif font
"font.sans-serif": ["DejaVu Sans"], # use a specific sans-serif font

b

plt.figure(figsize=(4.5, 2.5))

plt.plot(range(5))

plt.text(0.5, 3., "serif")

plt.text(0.5, 2., "monospace", family="monospace")
plt.text(2.5, 2., "sans-serif", family="sans-serif")
plt.text(2.5, 1., "comic sans", family="Comic Sans MS")
plt.xlabel("p is not $\\mu$")

plt.tight_layout(.5)

Custom preamble

Full customization is possible by adding your own commands to the preamble. Use
rcParams["pgf.preamble"] (default: '') if you want to configure the math fonts, using
unicode-math for example, or for loading additional packages. Also, if you want to do the

330 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=font.serif#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=font.sans-serif#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=font.monospace#a-sample-matplotlibrc-file
https://sourceforge.net/projects/cm-unicode/
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

font configuration yourself instead of using the fonts specified in the rc parameters, make
sure to disable rcParams["pgf.rcfonts"] (default: True).

wmn

mmnn

import matplotlib as mpl
mpl.use("pgf")

Choosing the TeX system

The TeX system to be used by Matplotlib is chosen by rcParams["pgf.texsystem"] (default:
'xelatex'). Possible values are 'xelatex' (default), 'lualatex' and 'pdflatex'. Please note that
when selecting pdflatex, the fonts and Unicode handling must be configured in the preamble.

wmn

mmnn

import matplotlib.pyplot as plt
plt.rcParams.update ({
"pgf.texsystem": "pdflatex",
"pgf.preamble": "\n".join([
r"\usepackage [utf8x] s
r"\usepackage [T1] ",
r"\usepackage ",
D,
1))

plt.figure(figsize=(4.5, 2.5))

plt.plot(range(5))

plt.text(0.5, 3., "serif", family="serif")
plt.text(0.5, 2., "monospace", family="monospace")
plt.text(2.5, 2., "sans-serif", family="sans-serif")
plt.xlabel(r"p is not μ")

plt.tight_layout(.5)

Troubleshooting

* Please note that the TeX packages found in some Linux distributions and MiKTeX in-
stallations are dramatically outdated. Make sure to update your package catalog and
upgrade or install a recent TeX distribution.

* On Windows, the PATH environment variable may need to be modified to include the
directories containing the latex, dvipng and ghostscript executables. See Environment
Variables and Setting environment variables in Windows for details.

2.6. Text 331

../../tutorials/introductory/customizing.html?highlight=pgf.rcfonts#a-sample-matplotlibrc-file
../../tutorials/introductory/customizing.html?highlight=pgf.texsystem#a-sample-matplotlibrc-file

Matplotlib, Release 3.3.0

* A limitation on Windows causes the backend to keep file handles that have been opened
by your application open. As a result, it may not be possible to delete the corresponding
files until the application closes (see #1324).

* Sometimes the font rendering in figures that are saved to png images is very bad. This
happens when the pdftocairo tool is not available and ghostscript is used for the pdf to
png conversion.

* Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX
syntax is valid and that you are using raw strings if necessary to avoid unintended escape
sequences.

* rcParams["pgf.preamble"] (default: '') provides lots of flexibility, and lots of ways to
cause problems. When experiencing problems, try to minimalize or disable the custom
preamble.

* Configuring an unicode-math environment can be a bit tricky. The TeXLive distribution for
example provides a set of math fonts which are usually not installed system-wide. XeTeX,
unlike Lualatex, cannot find these fonts by their name, which is why you might have to
specify \setmathfont{xits-math.otf} instead of \setmathfont{XITS Math} or alternatively
make the fonts available to your OS. See this tex.stackexchange.com question for more
details.

 If the font configuration used by Matplotlib differs from the font setting in yout LaTeX
document, the alignment of text elements in imported figures may be off. Check the
header of your .pgf file if you are unsure about the fonts Matplotlib used for the layout.

* Vector images and hence .pgf files can become bloated if there are a lot of objects in
the graph. This can be the case for image processing or very big scatter graphs. In an
extreme case this can cause TeX to run out of memory: “TeX capacity exceeded, sorry”
You can configure latex to increase the amount of memory available to generate the
.pdf image as discussed on tex.stackexchange.com. Another way would be to "raster-
ize” parts of the graph causing problems using either the rasterized=True keyword, or
.set_rasterized(True) as per this example.

If you still need help, please see Getting help

2.6.7 Text rendering With LaTeX

Rendering text with LaTeX in Matplotlib.

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with
the following backends:

* Agg
« PS
e PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling
with matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more
flexible, since different LaTeX packages (font packages, math packages, etc.) can be used.
The results can be striking, especially when you take care to use the same fonts in your figures
as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be in-
cluded with your LaTeX installation), and Ghostscript (GPL Ghostscript 9.0 or later is re-
quired). The executables for these external dependencies must all be located on your PATH.

332 Chapter 2. Tutorials

https://github.com/matplotlib/matplotlib/issues/1324
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a-sample-matplotlibrc-file
http://tex.stackexchange.com/questions/43642
http://tex.stackexchange.com/questions/7953
http://www.tug.org
http://www.nongnu.org/dvipng/
https://ghostscript.com/

Matplotlib, Release 3.3.0

There are a couple of options to mention, which can be changed using rc settings. Here is an
example matplotlibrc file:

font.family : serif

font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif

font.cursive : Zapf Chancery

font .monospace : Courier, Computer Modern Typewriter

text.usetex . true

The first valid font in each family is the one that will be loaded. If the fonts are not specified,
the Computer Modern fonts are used by default. All of the other fonts are Adobe fonts. Times
and Palatino each have their own accompanying math fonts, while the other Adobe serif fonts
make use of the Computer Modern math fonts. See the PSNFSS documentation for more
details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

import matplotlib as mpl
plt.rcParams.update ({

"text.usetex": True,

"font.family": "sans-serif",

"font.sans-serif": ["Helvetica"l})
for Palatino and other serif fonts use:
plt.rcParams.update ({

"text.usetex": True,

"font.family": "serif",

"font.serif": ["Palatino"],

b

Here is the standard example, /gallery/text_labels_and_annotations/tex_demo:

0

TeX is Number Z

in
—e
!

B

3.00 4

e e]
b
L

Velocity (“/sec)

1.00 4

00 02 04 06 0 L0
time (s)

Fig. 45: TeX Demo

Note that display math mode ($$ e=mc~2 $$) is not supported, but adding the command
\displaystyle, as in the above demo, will produce the same results.

Note: Certain characters require special escaping in TeX, such as:

#8788 ~_ “\NLF\NCON\T

2.6. Text 333

http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf
../../gallery/text_labels_and_annotations/tex_demo.html

Matplotlib, Release 3.3.0

Therefore, these characters will behave differently depending on rcParams["text.usetex"] (de-
fault: False).

usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example
taken from /gallery/text_labels_and_annotations/tex_demo. The axis labels include Unicode
text:

TeX is Number Z ;'

3.00 4
2.75 4
o 250
2.25 4
2.00 4

1.75 4

Velocity (°/sec

1.50 4

1.25 4

1.00 4

00 02 04 06 08 1o
time (s)

Fig. 46: TeX Unicode Demo

Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX
document, the default behavior of matplotlib is to distill the output, which removes some
postscript operators used by LaTeX that are illegal in an eps file. This step produces re-
sults which may be unacceptable to some users, because the text is coarsely rasterized and
converted to bitmaps, which are not scalable like standard postscript, and the text is not
searchable. One workaround is to set ps.distiller.res to a higher value (perhaps 6000) in
your rc settings, which will produce larger files but may look better and scale reasonably.
A better workaround, which requires Poppler or Xpdf, can be activated by changing the ps.
usedistiller rc setting to xpdf. This alternative produces postscript without rasterizing text,
so it scales properly, can be edited in Adobe Illustrator, and searched text in pdf documents.

Possible hangups

* On Windows, the PATH environment variable may need to be modified to include the
directories containing the latex, dvipng and ghostscript executables. See Environment
Variables and Setting environment variables in Windows for details.

» Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to
MiKTeX/Options and update your format files

* On Ubuntu and Gentoo, the base texlive install does not ship with the typelcm package.
You may need to install some of the extra packages to get all the goodies that come
bundled with other latex distributions.

334 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=text.usetex#a-sample-matplotlibrc-file
../../gallery/text_labels_and_annotations/tex_demo.html
https://poppler.freedesktop.org/
http://www.xpdfreader.com/

Matplotlib, Release 3.3.0

* Some progress has been made so matplotlib uses the dvi files directly for text layout.
This allows latex to be used for text layout with the pdf and svg backends, as well as
the *Agg and PS backends. In the future, a latex installation may be the only external
dependency.

Troubleshooting

* Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find .
matplotlib, see matplotlib configuration and cache directory locations.

* Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

* Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX
syntax is valid and that you are using raw strings if necessary to avoid unintended escape
sequences.

* Most problems reported on the mailing list have been cleared up by upgrading
Ghostscript. If possible, please try upgrading to the latest release before reporting prob-
lems to the list.

* The text.latex.preamble rc setting is not officially supported. This option provides lots of
flexibility, and lots of ways to cause problems. Please disable this option before reporting
problems to the mailing list.

» If you still need help, please see Getting help

2.7 Toolkits

These tutorials cover toolkits designed to extend the functionality of Matplotlib in order to
accomplish specific goals.

2.7.1 Overview of axes_gridl toolkit

Controlling the layout of plots with the mpl_toolkits.azes_gridi toolkit.

What is axes_gridl toolkit?

mpl_toolkits.azes_gridl is a collection of helper classes to ease displaying (multiple) images
with matplotlib. In matplotlib, the axes location (and size) is specified in the normalized figure
coordinates, which may not be ideal for displaying images that needs to have a given aspect
ratio. For example, it helps if you have a colorbar whose height always matches that of the
image. ImageGrid, RGB Axes and AxesDivider are helper classes that deal with adjusting the
location of (multiple) Axes. They provides a framework to adjust the position of multiple axes
at the drawing time. ParasiteAxes provides twinx(or twiny)-like features so that you can plot
different data (e.g., different y-scale) in a same Axes. AnchoredArtists includes custom artists
which are placed at some anchored position, like the legend.

2.7. Toolkits 335

https://ghostscript.com/

Matplotlib, Release 3.3.0

-2 0 2 =20 2

-2 0 2

Ax

Fig. 47: Demo Axes Grid

axes_gridl

ImageGrid

A grid of Axes.

In Matplotlib, the axes location (and size) is specified in normalized figure coordinates. This
may not be ideal for images that needs to be displayed with a given aspect ratio; for example,
it is difficult to display multiple images of a same size with some fixed padding between them.
ImageGrid can be used in such a case; see its docs for a detailed list of the parameters it
accepts.

@ o B N O

© o s~ N O

Fig. 48: Simple Axesgrid

» The position of each axes is determined at the drawing time (see AxesDivider), so that
the size of the entire grid fits in the given rectangle (like the aspect of axes). Note that
in this example, the paddings between axes are fixed even if you changes the figure size.

* axes in the same column has a same axes width (in figure coordinate), and similarly,
axes in the same row has a same height. The widths (height) of the axes in the same row
(column) are scaled according to their view limits (xlim or ylim).

* xaxis are shared among axes in a same column. Similarly, yaxis are shared among axes
in a same row. Therefore, changing axis properties (view limits, tick location, etc. either
by plot commands or using your mouse in interactive backends) of one axes will affect
all other shared axes.

The examples below show what you can do with ImageGrid.

336 Chapter 2. Tutorials

../../gallery/axes_grid1/demo_axes_grid.html
../../gallery/axes_grid1/simple_axesgrid.html

Matplotlib, Release 3.3.0

0 5 10 0 5 0.0 25

Fig. 49: Simple Axes Grid

-2 0 2

Fig. 50: Demo Axes Grid

AxesDivider Class

Behind the scene, the ImageGrid class and the RGBAxes class utilize the 4zesDivider class,
whose role is to calculate the location of the axes at drawing time. Direct use of the AxesDi-
vider class will not be necessary for most users. The axes divider module provides a helper
function make_azes_locatable, which can be useful. It takes a existing axes instance and create
a divider for it.

ax = subplot(l, 1, 1)
divider = make_axes_locatable(ax)

make _axes_locatable returns an instance of the AzesDivider class. It provides an append_azes
method that creates a new axes on the given side of ("top”, "right”, "bottom” and "left”) of
the original axes.

colorbar whose height (or width) in sync with the master axes
scatter__hist.py with AxesDivider

The /gallery/lines bars and markers/scatter hist example can be rewritten using
make_azes_locatable:

axScatter = subplot(111)
axScatter.scatter(x, y)
axScatter.set_aspect(1.)

create new axzes on the right and on the top of the current azes.

(continues on next page)

2.7. Toolkits 337

../../gallery/axes_grid1/simple_axesgrid2.html
../../gallery/axes_grid1/demo_axes_grid.html

Matplotlib, Release 3.3.0

Fig. 51: Simple Colorbar

(continued from previous page)

divider = make_axes_locatable(axScatter)
axHistx = divider.append_axes("top", size=1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes("right", size=1.2, pad=0.1, sharey=axScatter)

the scatter plot:

histograms

bins = np.arange(-1lim, lim + binwidth, binwidth)
axHistx.hist(x, bins=bins)

axHisty.hist(y, bins=bins, orientation='horizontal')

See the full source code below.

100 1

—4 4

T T T T T f T
—4 -2 0 2 4 0 50 100

Fig. 52: Scatter Hist

The /gallery/axes gridl/scatter hist locatable axes using the AxesDivider has some advan-
tage over the original /gallery/lines bars and markers/scatter hist in Matplotlib. For exam-
ple, you can set the aspect ratio of the scatter plot, even with the x-axis or y-axis is shared
accordingly.

338 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_colorbar.html
../../gallery/axes_grid1/scatter_hist_locatable_axes.html

Matplotlib, Release 3.3.0

ParasiteAxes

The ParasiteAxes is an axes whose location is identical to its host axes. The location is adjusted
in the drawing time, thus it works even if the host change its location (e.g., images).

In most cases, you first create a host axes, which provides a few method that can be used
to create parasite axes. They are twinx, twiny (which are similar to twinx and twiny in the
matplotlib) and twin. twin takes an arbitrary transformation that maps between the data
coordinates of the host axes and the parasite axes. draw method of the parasite axes are
never called. Instead, host axes collects artists in parasite axes and draw them as if they
belong to the host axes, i.e., artists in parasite axes are merged to those of the host axes and
then drawn according to their zorder. The host and parasite axes modifies some of the axes
behavior. For example, color cycle for plot lines are shared between host and parasites. Also,
the legend command in host, creates a legend that includes lines in the parasite axes. To
create a host axes, you may use host _subplot or host axes command.

Example 1. twinx

2.00 1 — Density r3.0
1754

r2.5
r2.0
2 1.00 F1.5
@

r 1o

r 0.5

0.00 4 r 0.0

T T T T T T T T T
0.00 0.25 0.50 0.75 100 1.25 1.50 175 2.00
Distance

Fig. 53: Parasite Simple

Example 2. twin

twin without a transform argument assumes that the parasite axes has the same data trans-
form as the host. This can be useful when you want the top(or right)-axis to have different
tick-locations, tick-labels, or tick-formatter for bottom(or left)-axis.

ax2 = ax.twin() # now, az2 is responsible for "top" azis and "right" azis
ax2.set_xticks([0., .5%np.pi, np.pi, 1.5%np.pi, 2*np.pil)
ax2.set_xticklabels(["0", r"$\frac \pi$",

r"π", r"$\frac \pi$", r"2π"]1)

A more sophisticated example using twin. Note that if you change the x-limit in the host axes,
the x-limit of the parasite axes will change accordingly.

2.7. Toolkits 339

../../gallery/axes_grid1/parasite_simple.html

Matplotlib, Release 3.3.0

1.00 4 r

0.75 r

0.50 r

0.25 4 r

0.00 4 r

—0.25 A r

—0.50 A r

—0.75 A r

—1.00 A r

Fig. 54: Simple Axisline4

Proper Motion ["/yr]
0.10 0.15 0.20 0.25 0.30

3000 F

2750 4 L
2500 - |
2250 1 L
2000 - + |
1750 - L
P i — L

1250 A F

FWHM [kmy/s]

1000 F

T T T T T T
1000 1500 2000 2500 3000 3500
Linear velocity at 2.3 kpc [km/s]

Fig. 55: Parasite Simple2

340 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_axisline4.html
../../gallery/axes_grid1/parasite_simple2.html

Matplotlib, Release 3.3.0

AnchoredArtists

It’s a collection of artists whose location is anchored to the (axes) bbox, like the legend. It is
derived from OffsetBox in Matplotlib, and artist need to be drawn in the canvas coordinate.
But, there is a limited support for an arbitrary transform. For example, the ellipse in the
example below will have width and height in the data coordinate.

®

1.0

0.8 4

0.6 4

0.4 4

0.2 4

. iy

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

Fig. 56: Simple Anchored Artists

InsetLocator

mpl_toolkits.azes_gridl.inset_locator provides helper classes and functions to place your
(inset) axes at the anchored position of the parent axes, similarly to AnchoredArtist.

Using mpl_toolkits.azes_gridl.inset_locator.inset_azes(), you can have inset axes whose
size is either fixed, or a fixed proportion of the parent axes:

inset_axes = inset_axes(parent_axes,
width="30%", # width = 307 of parent_bbozx
height=1., # height : 1 inch
loc='lower left')

creates an inset axes whose width is 30% of the parent axes and whose height is fixed at 1
inch.

You may creates your inset whose size is determined so that the data scale of the inset axes
to be that of the parent axes multiplied by some factor. For example,

inset_axes = zoomed_inset_axes(ax,
0.5, # zoom = 0.5
loc='upper right')

creates an inset axes whose data scale is half of the parent axes. Here is complete examples.

For example, zoomed_inset_azes() can be used when you want the inset represents the zoom-
up of the small portion in the parent axes. And inset_locator provides a helper function
mark_inset () to mark the location of the area represented by the inset axes.

2.7. Toolkits 341

../../gallery/axes_grid1/simple_anchored_artists.html

Matplotlib, Release 3.3.0

1.0 1.0
0.8 | 0.81|

0.6 0.6

0.4 0.4

0.2] 0.2 I::]
0.0 T

T T . T T T
0.00 025 050 075 100 0.00 025 050 075 100

Fig. 57: Inset Locator Demo

Fig. 58: Inset Locator Demo?2

RGB Axes

RGBAxes is a helper class to conveniently show RGB composite images. Like ImageGrid, the
location of axes are adjusted so that the area occupied by them fits in a given rectangle. Also,
the xaxis and yaxis of each axes are shared.

from mpl_toolkits.axes_gridl.axes_rgb import RGBAxes

fig = plt.figure()

ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8], pad=0.0)
r, g, b =get_rgb() #r, g, b are 2D images.
ax.imshow_rgb(r, g, b)

342 Chapter 2. Tutorials

../../gallery/axes_grid1/inset_locator_demo.html
../../gallery/axes_grid1/inset_locator_demo2.html
../../gallery/axes_grid1/demo_axes_rgb.html

Matplotlib, Release 3.3.0

AxesDivider

The mpl_toolkits.azes_gridl.azes_divider module provides helper classes to adjust the axes
positions of a set of images at drawing time.

* azes_size provides a class of units that are used to determine the size of each axes. For
example, you can specify a fixed size.

* Divider is the class that calculates the axes position. It divides the given rectangular
area into several areas. The divider is initialized by setting the lists of horizontal and
vertical sizes on which the division will be based. Then use new_tiocator(), which returns
a callable object that can be used to set the axes locator of the axes.

Here, we demonstrate how to achieve the following layout: we want to position axes in a 3x4
grid (note that Divider makes row indices start from the bottom(!) of the grid):

o o o to— - +
[(2, 00 | (2, 1) | (2, 2) | (2, 3) |
o dom o fo— +
[(1, 0 | (1, 1| @, 21 @, 3) |
Fomm Fomm o Fomm +

| (0, 0 | (0, 1) | (0, 20 | (0, 3) |
- to— - o tom - +

such that the bottom row has a fixed height of 2 (inches) and the top two rows have a height
ratio of 2 (middle) to 3 (top). (For example, if the grid has a size of 7 inches, the bottom row
will be 2 inches, the middle row also 2 inches, and the top row 3 inches.)

These constraints are specified using classes from the azes_size module, namely:

from mpl_toolkits.axes_gridl.axes_size import Fixed, Scaled
vert = [Fixed(2), Scaled(2), Scaled(3)]

(More generally, azes_size classes define a get_size(renderer) method that returns a pair
of floats - a relative size, and an absolute size. Fixed(2).get_size(renderer) returns (0, 2);
Scaled(2) .get_size(renderer) returns (2, 0).)

We use these constraints to initialize a Divider object:

rect = [0.2, 0.2, 0.6, 0.6] # Position of the grid in the figure.
[Fixed(2), Scaled(2), Scaled(3)] # As abowe.

horiz = [...] # Some other horizontal constraints.

divider = Divider(fig, rect, horiz, vert)

vert

then use Divider.new_locator to create an AzesLocator instance for a given grid entry:

locator = divider.new_locator(nx=0, ny=1) # Grid entry (1, 0). ‘

and make it responsible for locating the axes:

ax.set_axes_locator (locator) ‘

The AzesLocator is a callable object that returns the location and size of the cell at the first
column and the second row.

Locators that spans over multiple cells can be created with, e.g.:

Columns #0 and #1 ("0-2 range"), row #1.
locator = divider.new_locator(nx=0, nx1=2, ny=1)

2.7. Toolkits 343

Matplotlib, Release 3.3.0

See the example,

You can also adjust the size of each axes according to its x or y data limits (AxesX and AxesY).

2.7.2 Overview of axisartist toolkit

The axisartist toolkit tutorial.

Warning: axisartist uses a custom Axes class (derived from the Matplotlib’s original Axes
class). As a side effect, some commands (mostly tick-related) do not work.

The axisartist contains a custom Axes class that is meant to support curvilinear grids (e.g.,
the world coordinate system in astronomy). Unlike Matplotlib’s original Axes class which
uses Axes.xaxis and Axes.yaxis to draw ticks, ticklines, etc., axisartist uses a special artist
(AxisArtist) that can handle ticks, ticklines, etc. for curved coordinate systems.

Since it uses special artists, some Matplotlib commands that work on Axes.xaxis and
Axes.yaxis may not work.

344 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_axes_divider1.html
../../gallery/axes_grid1/simple_axes_divider3.html

Matplotlib, Release 3.3.0

I
-120° -90° —60° -30°

Fig. 59: Demo Floating Axis

axisartist

The axisartist module provides a custom (and very experimental) Axes class, where each axis
(left, right, top, and bottom) have a separate associated artist which is responsible for drawing
the axis-line, ticks, ticklabels, and labels. You can also create your own axis, which can pass
through a fixed position in the axes coordinate, or a fixed position in the data coordinate (i.e.,
the axis floats around when viewlimit changes).

The axes class, by default, has its xaxis and yaxis invisible, and has 4 additional artists which
are responsible for drawing the 4 axis spines in "left”, "right”, "bottom”, and "top”. They are
accessed as ax.axis[”left”], ax.axis[“right”], and so on, i.e., ax.axis is a dictionary that contains
artists (note that ax.axis is still a callable method and it behaves as an original Axes.axis

method in Matplotlib).

To create an axes,

import mpl_toolkits.axisartist as AA
fig = plt.figure()

ax = AA.Axes(fig, [0.1, 0.1, 0.8, 0.8])
fig.add_axes(ax)

or to create a subplot

ax = AA.Subplot(fig, 111)
fig.add_subplot(ax)

For example, you can hide the right and top spines using:

ax.axis["right"].set_visible(False)
ax.axis["top"].set_visible(False)

It is also possible to add a horizontal axis. For example, you may have an horizontal axis at
y=0 (in data coordinate).

ax.axis["y=0"] = ax.new_floating_axis(nth_coord=0, value=0)

Or a fixed axis with some offset

2.7. Toolkits 345

../../gallery/axisartist/demo_floating_axis.html

Matplotlib, Release 3.3.0

1.0 -

0.8 1

0.6 |-

0.4+

0.2+

Fig. 60: Simple Axisline3

Fig. 61: Simple Axisartistl

346 Chapter 2. Tutorials

../../gallery/axisartist/simple_axisline3.html
../../gallery/axisartist/simple_axisartist1.html

Matplotlib, Release 3.3.0

make new (right-side) yazis, but with some offset
ax.axis["right2"] = ax.new_fixed_axis(loc="right", offset=(20, 0))

axisartist with ParasiteAxes

Most commands in the axes gridl toolkit can take an axes class keyword argument, and the
commands create an axes of the given class. For example, to create a host subplot with
axisartist.Axes,

import mpl_toolkits.axisartist as AA
from mpl_toolkits.axes_gridl import host_subplot

host = host_subplot(111, axes_class=AA.Axes)

Here is an example that uses ParasiteAxes.

2.00 4.0
—— Density 160
175 Temperature 135
— \elocity
150 b 130 150
125} 12.5 lag
@ 100} 42.0 S
& {303
075} 115
120
050 110
025} dos 110
0.00 . L L . L . 0.0

L
000 025 050 075 100 125 150 175 2.00
Distance

Fig. 62: Demo Parasite Axes2

Curvilinear Grid

The motivation behind the AxisArtist module is to support a curvilinear grid and ticks.

Floating Axes

AxisArtist also supports a Floating Axes whose outer axes are defined as floating axis.

axisartist namespace

The axisartist namespace includes a derived Axes implementation. The biggest difference is
that the artists responsible to draw axis line, ticks, ticklabel and axis labels are separated out
from the Matplotlib’s Axis class, which are much more than artists in the original Matplotlib.
This change was strongly motivated to support curvilinear grid. Here are a few things that
mpl toolkits.axisartist.Axes is different from original Axes from Matplotlib.

2.7. Toolkits 347

../../gallery/axisartist/demo_parasite_axes2.html

Matplotlib, Release 3.3.0

10.0 . — . 90° 60°
o T
N
10
7.5 a 30°
o S 8
q ~
6
50| <5 \
L 4o
2.5
6
| i
6 6§ 8 10 12

0.0 I I | d
0.0 1.5 3.0 45 60 7.5 9.0

Fig. 63: Demo Curvelinear Grid

o8

15 V3

10

Fig. 64: Demo Floating Axes

348 Chapter 2. Tutorials

../../gallery/axisartist/demo_curvelinear_grid.html
../../gallery/axisartist/demo_floating_axes.html

Matplotlib, Release 3.3.0

* Axis elements (axis line(spine), ticks, ticklabel and axis labels) are drawn by a AxisArtist
instance. Unlike Axis, left, right, top and bottom axis are drawn by separate artists. And
each of them may have different tick location and different tick labels.

» gridlines are drawn by a Gridlines instance. The change was motivated that in curvilinear
coordinate, a gridline may not cross axis-lines (i.e., no associated ticks). In the original
Axes class, gridlines are tied to ticks.

* ticklines can be rotated if necessary (i.e, along the gridlines)
In summary, all these changes was to support
* a curvilinear grid.

* a floating axis

I
—120° -90° —60° —30°

Fig. 65: Demo Floating Axis

mpl _toolkits.axisartist.Axes class defines a axis attribute, which is a dictionary of AxisArtist
instances. By default, the dictionary has 4 AxisArtist instances, responsible for drawing of
left, right, bottom and top axis.

xaxis and yaxis attributes are still available, however they are set to not visible. As separate
artists are used for rendering axis, some axis-related method in Matplotlib may have no ef-
fect. In addition to AxisArtist instances, the mpl toolkits.axisartist.Axes will have gridlines
attribute (Gridlines), which obviously draws grid lines.

In both AxisArtist and Gridlines, the calculation of tick and grid location is delegated to an
instance of GridHelper class. mpl toolkits.axisartist.Axes class uses GridHelperRectlinear as
a grid helper. The GridHelperRectlinear class is a wrapper around the xaxis and yaxis of
Matplotlib’s original Axes, and it was meant to work as the way how Matplotlib’s original
axes works. For example, tick location changes using set _ticks method and etc. should work
as expected. But change in artist properties (e.g., color) will not work in general, although
some effort has been made so that some often-change attributes (color, etc.) are respected.

AxisArtist

AxisArtist can be considered as a container artist with following attributes which will draw
ticks, labels, etc.

e line

2.7. Toolkits 349

../../gallery/axisartist/demo_floating_axis.html

Matplotlib, Release 3.3.0

* major ticks, major ticklabels
* minor ticks, minor ticklabels
 offsetText

* label

line

Derived from Line2D class. Responsible for drawing a spinal(?) line.

major__ticks, minor_ticks

Derived from Line2D class. Note that ticks are markers.

major__ticklabels, minor__ticklabels

Derived from Text. Note that it is not a list of Text artist, but a single artist (similar to a
collection).

axislabel

Derived from Text.

Default AxisArtists

By default, following for axis artists are defined.:

’ax.axis[”left”], ax.axis["bottom"], ax.axis["right"], ax.axis["top"] ‘

The ticklabels and axislabel of the top and the right axis are set to not visible.

For example, if you want to change the color attributes of major ticklabels of the bottom x-axis

’ax.axis[”bottom"].major_ticklabels.set_color(”b”) ‘

Similarly, to make ticklabels invisible

’ax.axis[”bottom"].major_ticklabels.set_visible(False) ‘

AxisArtist provides a helper method to control the visibility of ticks, ticklabels, and label. To
make ticklabel invisible,

ax.axis["bottom"].toggle(ticklabels=False) ‘

To make all of ticks, ticklabels, and (axis) label invisible

’ax.axis[”bottom"].toggle(a11=False) ‘

To turn all off but ticks on

350 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

’ax.axis[”bottom"].toggle(a11=False, ticks=True) ‘

To turn all on but (axis) label off

’ax.axis[”bottom"].toggle(a11=True, label=False) ‘

ax.axis’s _getitem method can take multiple axis names. For example, to turn ticklabels of
“top” and “right” axis on,

’ax.axis[”top", "right"].toggle(ticklabels=True) ‘

Note that ax.axis["top", "right"] returns a simple proxy object that translate above code to
something like below.

for n in ["top", "right"]:
ax.axis[n] .toggle(ticklabels=True)

So, any return values in the for loop are ignored. And you should not use it anything more
than a simple method.

».on

Like the list indexing ”:” means all items, i.e.,

ax.axis[:].major_ticks.set_color("r")

changes tick color in all axis.

HowTo

1. Changing tick locations and label.

Same as the original Matplotlib’s axes:

ax.set_xticks([1, 2, 31)

2. Changing axis properties like color, etc.

Change the properties of appropriate artists. For example, to change the color of
the ticklabels:

’ax.axis["left”].major_ticklabels.set_color("r") ‘

3. To change the attributes of multiple axis:

’ax.axis["left”, "bottom"] .major_ticklabels.set_color("r")

or to change the attributes of all axis:

’ax.axis[:].major_ticklabels.set_color("r") ‘

4. To change the tick size (length), you need to use axis.major ticks.set ticksize method. To
change the direction of the ticks (ticks are in opposite direction of ticklabels by default),
use axis.major ticks.set tick out method.

To change the pad between ticks and ticklabels, use axis.major ticklabels.set pad
method.

To change the pad between ticklabels and axis label, axis.label.set pad method.

2.7. Toolkits 351

Matplotlib, Release 3.3.0

Rotation and Alignment of TickLabels

This is also quite different from standard Matplotlib and can be confusing. When you want to
rotate the ticklabels, first consider using “set_axis direction” method.

axl.axis["left"] .major_ticklabels.set_axis_direction("top")
axl.axis["right"].label.set_axis_direction("left")

Label
[3qe1

£0 02 04 06 08 10
p T T T T

=}

L L L L
0.2 0.4 0.6 0.8 1.0

Fig. 66: Simple Axis Direction01

oo

The parameter for set_axis direction is one of [”left”, “right”, "bottom”, "top”].
You must understand some underlying concept of directions.

1. There is a reference direction which is defined as the direction of the axis line
with increasing coordinate. For example, the reference direction of the left
x-axis is from bottom to top.

Fig. 67: Axis Direction Demo - Step 01

The direction, text angle, and alignments of the ticks, ticklabels and axis-
label is determined with respect to the reference direction

2. ticklabel direction is either the right-hand side (+) of the reference direction
or the left-hand side (-).

o o

ticklabel direction=+ ticklabel direction=—

Fig. 68: Axis Direction Demo - Step 02

3. same for the label direction

352 Chapter 2. Tutorials

../../gallery/axisartist/simple_axis_direction01.html
../../gallery/axisartist/axis_direction_demo_step01.html
../../gallery/axisartist/axis_direction_demo_step02.html

Matplotlib, Release 3.3.0

Label
l2qen

label direction=+ label direction=—

Fig. 69: Axis Direction Demo - Step 03

4. ticks are by default drawn toward the opposite direction of the ticklabels.

5. text rotation of ticklabels and label is determined in reference to the tickla-

bel direction or label direction, respectively. The rotation of ticklabels and
label is anchored.

rotation=0
rotation="
—uonelol

0
o1=4u0 el

label direction=+ label direction=—

Fig. 70: Axis Direction Demo - Step 04

On the other hand, there is a concept of "axis direction”. This is a default setting of above
properties for each, “bottom”, "left”, "top”, and "right” axis.

? ? left bottom | right top
axislabel | direction | ’-’ '+’ '+’
axislabel | rotation | 180 0 0 180
axislabel | va center | top center | bottom
axislabel | ha right center right center
ticklabel | direction | ’-’ T+’ "+’
ticklabels | rotation | 90 0 -90 180
ticklabel | ha right center right center
ticklabel | va center | baseline | center | baseline

And, ’set axis direction(”top”)’ means to adjust the text rotation etc, for settings suitable for
”top” axis. The concept of axis direction can be more clear with curved axis.

The axis direction can be adjusted in the AxisArtist level, or in the level of its child artists,
i.e., ticks, ticklabels, and axis-label.

’axl.axis[”left”].set_axis_direction(”top”) ‘

changes axis direction of all the associated artist with the ”left” axis, while

’axl.axis[”left"].major_ticklabels.set_axis_direction(”top”) ‘

changes the axis direction of only the major ticklabels. Note that set axis direction in
the AxisArtist level changes the ticklabel direction and label direction, while changing the
axis_direction of ticks, ticklabels, and axis-label does not affect them.

2.7. Toolkits 353

../../gallery/axisartist/axis_direction_demo_step03.html
../../gallery/axisartist/axis_direction_demo_step04.html

Matplotlib, Release 3.3.0

bottom left top right '

Fig. 71: Demo Axis Direction

If you want to make ticks outward and ticklabels inside the axes, use invert_ticklabel direction

method.

’ax.axis[:].invert_ticklabel_direction()

A related method is ”set tick out”. It makes ticks outward (as a matter of fact, it makes ticks

toward the opposite direction of the default direction).

ax.axis[:].major_ticks.set_tick_out(True)

40.8 0.8 4

Y-label
Y-label

102
0.2

0.2 4

08 |
X-label

T T
0.2 0.8

Xlabel

Fig. 72: Simple Axis Direction03

So, in summary,
* AxisArtist’s methods
- set axis direction: "left”, "right”, "bottom”, or “top”

” o

- set _ticklabel direction: "+” or
- set_axislabel direction: "+” or ”-”
- invert ticklabel direction
* Ticks’ methods (major ticks and minor ticks)
- set _tick out: True or False
- set ticksize: size in points
» TickLabels’ methods (major ticklabels and minor ticklabels)
- set axis direction: "left”, "right”, "bottom”, or “top”
- set rotation: angle with respect to the reference direction

- set ha and set va: see below

354

Chapter 2. Tutorials

../../gallery/axisartist/demo_axis_direction.html
../../gallery/axisartist/simple_axis_direction03.html

Matplotlib, Release 3.3.0

¢ Axisl.abels’ methods (label)
- set axis direction: "left”, "right”, "bottom”, or “top”
- set rotation: angle with respect to the reference direction

- set ha and set va

Adjusting ticklabels alignment

Alignment of TickLabels are treated specially. See below

= loooeng [

=

c

T

2 short |
. .
i n
va=baseline

-

3 loooong [

c

w

i

= short |
1
in n

va=top

& loooeng [

o

1T

©

+ short
. .
1
bl n
va=bottom

Fig. 73: Demo Ticklabel Alignment

Adjusting pad

To change the pad between ticks and ticklabels

’ax.axis[”left”].major_ticklabels.set_pad(iO)

Or ticklabels and axis-label

’ ax.axis["left"].label.set_pad(10)

default ticklabels.set_pad(10) label.set_pad(20) ticks.set_tick_out(True)

~ A1 p P!
? . L3
o ? . % .
L 0 & ; 2P
LI 2P LI
0 o 0 @

Fig. 74: Simple Axis Pad

2.7. Toolkits 355

../../gallery/axisartist/demo_ticklabel_alignment.html
../../gallery/axisartist/simple_axis_pad.html

Matplotlib, Release 3.3.0

GridHelper

To actually define a curvilinear coordinate, you have to use your own grid helper. A gener-
alised version of grid helper class is supplied and this class should suffice in most of cases. A
user may provide two functions which defines a transformation (and its inverse pair) from the
curved coordinate to (rectilinear) image coordinate. Note that while ticks and grids are drawn
for curved coordinate, the data transform of the axes itself (ax.transData) is still rectilinear
(image) coordinate.

from mpl_toolkits.axisartist.grid_helper_curvelinear \
import GridHelperCurveLinear
from mpl_toolkits.axisartist import Subplot

from curved coordinate to rectlinear coordinate.
def tr(x, y):

X, y = np.asarray(x), np.asarray(y)

return x, y—X

from rectlinear coordinate to curved coordinate.
def inv_tr(x, y):

X, y = np.asarray(x), np.asarray(y)

return x, y+x
grid_helper = GridHelperCurveLinear ((tr, inv_tr))

axl = Subplot(fig, 1, 1, 1, grid_helper=grid_helper)

fig.add_subplot(ax1)

You may use Matplotlib’s Transform instance instead (but a inverse transformation must be
defined). Often, coordinate range in a curved coordinate system may have a limited range,
or may have cycles. In those cases, a more customized version of grid helper is required.

import mpl_toolkits.axisartist.angle_helper as angle_helper

PolarAzes.PolarTransform takes radian. However, we want our coordinate
system in degree
tr = Affine2D() .scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

extreme finder: find a range of coordinate.

20, 20: number of sampling points along =, y direction

The first coordinate (longitude, but theta in polar)

has a cycle of 360 degree.

The second coordinate (latitude, but radius in polar) has a minimum of O

extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle = 360,
lat_cycle = None,
lon_minmax = None,
lat_minmax = (O, np.inf),

)

Find a grid values appropriate for the coordinate (degree,
minute, second). The argument is a approzimate number of grids.
grid_locatorl = angle_helper.LocatorDMS(12)

And also uses an appropriate formatter. Note that the acceptable Locator
and Formatter classes are different than that of Matplotlidb's, and you

(continues on next page)

356 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

(continued from previous page)

cannot directly use Matplotlib's Locator and Formatter here (but may be
possible in the future).
tick_formatterl = angle_helper.FormatterDMS()

grid_helper = GridHelperCurvelLinear (tr,
extreme_finder=extreme_finder,
grid_locatorl=grid_locatorl,
tick_formatterl=tick_formatteril

)

Again, the transData of the axes is still a rectilinear coordinate (image coordinate). You may
manually do conversion between two coordinates, or you may use Parasite Axes for conve-
nience.:

axl = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

A parasite azxes with given transform

ax2 = ParasiteAxesAuxTrans(axl, tr, "equal")

note that ax2.transData == tr + azl.transData

Anything you draw in ax2 will match the ticks and grids of azl.
axl.parasites.append(ax2)

10.0 T T T T T 90° 60°

12,

10
7.5 30°

Q
10.0

2.5

0 AN 6 6 8 10 12

.0 I I
0.0 1.5 3.0 45 60 7.5 9.0

Fig. 75: Demo Curvelinear Grid

FloatingAxis

A floating axis is an axis one of whose data coordinate is fixed, i.e, its location is not fixed in
Axes coordinate but changes as axes data limits changes. A floating axis can be created using
new floating axis method. However, it is your responsibility that the resulting AxisArtist
is properly added to the axes. A recommended way is to add it as an item of Axes’s axis
attribute.:

floating azis whose first (index starts from 0) coordinate
(theta) is fized at 60

axl.axis["lat"] = axis = axl.new_floating_axis(0, 60)
axis.label.set_text(r"$\theta = 60 {\circ}$")
axis.label.set_visible(True)

See the first example of this page.

2.7. Toolkits 357

../../gallery/axisartist/demo_curvelinear_grid.html

Matplotlib, Release 3.3.0

Current Limitations and TODO's

The code need more refinement. Here is a incomplete list of issues and TODO'’s

* No easy way to support a user customized tick location (for curvilinear grid). A new
Locator class needs to be created.

* FloatingAxis may have coordinate limits, e.g., a floating axis of x = 0, but y only spans
from O to 1.

* The location of axislabel of FloatingAxis needs to be optionally given as a coordinate
value. ex, a floating axis of x=0 with label at y=1

2.7.3 The mplot3d Toolkit

Generating 3D plots using the mplot3d toolkit.

Contents

¢ The mplot3d Toolkit
- Getting started
* Line plots
* Scatter plots
* Wireframe plots
* Surface plots
* Tri-Surface plots
* Contour plots
* Filled contour plots
* Polygon plots
* Bar plots
*x Quiver
* 2D plots in 3D

*x Text

* Subplotting

Getting started

3D Axes (of class Azes3D) are created by passing the projection="3d" keyword argument to
Figure.add_subplot:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111l, projection='3d"')

358 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

Changed in version 1.0.0: Prior to Matplotlib 1.0.0, 4zes3D needed to be directly instantiated
with from mpl_toolkits.mplot3d import Axes3D; ax = Axes3D(fig).

Changed in version 3.2.0: Prior to Matplotlib 3.2.0, it was necessary to explicitly import the
mpl_toolkits.mplot3d module to make the '3d’ projection to Figure.add_subplot.

See the mplot3d FAQ for more information about the mplot3d toolkit.

Line plots

Axes3D.plot(self, xs, ys, *args, zdir="2", **kwargs)
Plot 2D or 3D data.

Parameters
xs [1D array-like] x coordinates of vertices.
ys [1D array-like] y coordinates of vertices.

zs [float or 1D array-like] z coordinates of vertices; either one for all points
or one for each point.

zdir [{'x’, 'y’, 'z’}, default: 'z’] When plotting 2D data, the direction to use

asz ('’x’, 'y’ or’z’).

**kwargs Other arguments are forwarded to matplotlib.azes.Azes.plot.

—— parametric curve

Fig. 76: Lines3d

Scatter plots

Axes3D.scatter(self, xs, ys, zs=0, zdir="2', s=20, c=None, depthshade=True, *args,
**kwargs)
Create a scatter plot.

Parameters

xs, ys [array-like] The data positions.

2.7. Toolkits 359

../../gallery/mplot3d/lines3d.html

Matplotlib, Release 3.3.0

zs [float or array-like, default: 0] The z-positions. Either an array of the
same length as xs and ys or a single value to place all points in the same
plane.

A]

zdir [{'x’, 'y, 'Z’, 'x’, ’-y’, ’-2'}, default: 'z’] The axis direction for the zs.
This is useful when plotting 2D data on a 3D Axes. The data must be
passed as xs, ys. Setting zdir to 'y’ then plots the data to the x-z-plane.

See also /gallery/mplot3d/2dcollections3d.

s [float or array-like, default: 20] The marker size in points**2. Either an
array of the same length as xs and ys or a single value to make all markers
the same size.

¢ [color, sequence, or sequence of colors, optional] The marker color. Pos-
sible values:

* A single color format string.

* A sequence of colors of length n.

* A sequence of n numbers to be mapped to colors using cmap and norm.
* A 2-D array in which the rows are RGB or RGBA.

For more details see the ¢ argument of scatter.

depthshade [bool, default: True] Whether to shade the scatter markers
to give the appearance of depth. Each call to scatter() will perform its
depthshading independently.

**kwargs All other arguments are passed on to scatter.
Returns

paths [PathCollection]

Fig. 77: Scatter3d

Wireframe plots

Axes3D.plot_wireframe(self, X, Y, Z, *args, **kwargs)
Plot a 3D wireframe.

360 Chapter 2. Tutorials

../../gallery/mplot3d/scatter3d.html

Matplotlib, Release 3.3.0

Note: The rcount and ccount kwargs, which both default to 50, determine the max-
imum number of samples used in each direction. If the input data is larger, it will be
downsampled (by slicing) to these numbers of points.

Parameters
X, Y, Z [2d arrays] Data values.

rcount, ccount [int] Maximum number of samples used in each direction.
If the input data is larger, it will be downsampled (by slicing) to these
numbers of points. Setting a count to zero causes the data to be not
sampled in the corresponding direction, producing a 3D line plot rather
than a wireframe plot. Defaults to 50.

New in version 2.0.

rstride, cstride [int] Downsampling stride in each direction. These argu-
ments are mutually exclusive with rcount and ccount. If only one of
rstride or cstride is set, the other defaults to 1. Setting a stride to zero
causes the data to be not sampled in the corresponding direction, pro-
ducing a 3D line plot rather than a wireframe plot.

‘classic’ mode uses a default of rstride = cstride = 1 instead of the new
default of rcount = ccount = 50.

**kwargs Other arguments are forwarded to Line3DCollection.

Fig. 78: Wire3d

Surface plots

Axes3D.plot_surface(self, X, Y, Z, *args, norm=None, vmin=None, vmax=None, light-
source=None, **kwargs)
Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports color mapping
by supplying the cmap argument.

2.7. Toolkits 361

../../gallery/mplot3d/wire3d.html

Matplotlib, Release 3.3.0

Note: The rcount and ccount kwargs, which both default to 50, determine the max-
imum number of samples used in each direction. If the input data is larger, it will be
downsampled (by slicing) to these numbers of points.

Note: To maximize rendering speed consider setting rstride and cstride to divisors of
the number of rows minus 1 and columns minus 1 respectively. For example, given 51
rows rstride can be any of the divisors of 50.

Similarly, a setting of rstride and cstride equal to 1 (or rcount and ccount equal the
number of rows and columns) can use the optimized path.

Parameters
X, Y, Z [2d arrays] Data values.

rcount, ccount [int] Maximum number of samples used in each direction.
If the input data is larger, it will be downsampled (by slicing) to these
numbers of points. Defaults to 50.

New in version 2.0.

rstride, cstride [int] Downsampling stride in each direction. These argu-
ments are mutually exclusive with rcount and ccount. If only one of
rstride or cstride is set, the other defaults to 10.

‘classic’ mode uses a default of rstride = cstride = 10 instead of the new
default of rcount = ccount = 50.

color [color-like] Color of the surface patches.

cmap [Colormap] Colormap of the surface patches.

facecolors [array-like of colors.] Colors of each individual patch.
norm [Normalize] Normalization for the colormap.

vmin, vimax [float] Bounds for the normalization.

shade [bool, default: True] Whether to shade the facecolors. Shading is
always disabled when cmap is specified.

lightsource [LightSource] The lightsource to use when shade is True.

**kwargs Other arguments are forwarded to Poly3DCollection.

Tri-Surface plots

Axes3D.plot_trisurf (self, *args, color=None, norm=None, vmin=None, vmax=None,

lightsource=None, *kwargs)
Plot a triangulated surface.

The (optional) triangulation can be specified in one of two ways; either:

plot_trisurf (triangulation, ...)

where triangulation is a Triangulation object, or:

362

Chapter 2. Tutorials

Matplotlib, Release 3.3.0

0.5

0.0

—=0.5

Fig. 79: Surface3d
Surface3d 2
Surface3d 3

plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation
of these possibilities.

The remaining arguments are:

plot_trisurf(..., Z)

where Z is the array of values to contour, one per point in the triangulation.
Parameters
X, Y, Z [array-like] Data values as 1D arrays.
color Color of the surface patches.
cmap A colormap for the surface patches.
norm [Normalize] An instance of Normalize to map values to colors.
vmin, vimax [float, default: None] Minimum and maximum value to map.

shade [bool, default: True] Whether to shade the facecolors. Shading is
always disabled when cmap is specified.

lightsource [LightSource] The lightsource to use when shade is True.
**kwargs All other arguments are passed on to Poly3DCollection

Examples

New in version 1.2.0.

2.7. Toolkits 363

../../gallery/mplot3d/surface3d.html

Matplotlib, Release 3.3.0

1.0
0.5 0.5
0.0 0.0
-0.5 -0.5
-1.0
1.0

1.0

10 —10

364 Chapter 2. Tutorials

Matplotlib, Release 3.3.0

0.4

0.2

0.0

-0.2

—-0.4

Fig. 80: Trisurf3d

Contour plots

Axes3D.contour(self, X, Y, Z, *args, extend3d=False, stride=5, zdir="2’, offset=None,
**kwargs)
Create a 3D contour plot.

Parameters
X, Y, Z [array-like] Input data.
extend3d [bool, default: False] Whether to extend contour in 3D.
stride [int] Step size for extending contour.
zdir [{'x’, 'y’, '2’}, default: 'z’] The direction to use.

offset [float, optional] If specified, plot a projection of the contour lines at
this position in a plane normal to zdir.

*args, **kwargs Other arguments are forwarded to matplotlib.azes.Azes.
contour.

Returns

matplotlib.contour.QuadContourSet

Filled contour plots

Axes3D.contourf (self, X, Y, Z, *args, zdir="2’, offset=None, **kwargs)
Create a 3D filled contour plot.

Parameters
X, Y, Z [array-like] Input data.
zdir [{'x’, 'y’, 'z'}, default: 'z’] The direction to use.

offset [float, optional] If specified, plot a projection of the contour lines at
this position in a plane normal to zdir.

2.7. Toolkits 365

../../gallery/mplot3d/trisurf3d.html

Matplotlib, Release 3.3.0

Fig. 81: Contour3d
Contour3d 2
Contour3d 3

*args, **kwargs Other arguments are forwarded to matplotlib.azes.Azes.
contourf.

Returns
matplotlib.contour.QuadContourSet

Notes

New in version 1.1.0: The zdir and offset parameters.

Fig. 82: Contourf3d
Contourf3d 2

New in version 1.1.0: The feature demoed in the second contourf3d example was enabled as
a result of a bugfix for version 1.1.0.

366 Chapter 2. Tutorials

../../gallery/mplot3d/contour3d.html
../../gallery/mplot3d/contourf3d.html

Matplotlib, Release 3.3.0

Polygon plots

Axes3D.add_collection3d(self, col, zs=0, zdir="2")
Add a 3D collection object to the plot.

2D collection types are converted to a 3D version by modifying the object and adding z
coordinate information.

Supported are:
» PolyCollection
* LineCollection

* PatchCollection

Fig. 83: Polys3d

Bar plots

Axes3D.bar (self, left, height, zs=0, zdir="2’, *args, **kwargs)
Add 2D bar(s).

Parameters
left [1D array-like] The x coordinates of the left sides of the bars.
height [1D array-like] The height of the bars.

zs [float or 1D array-like] Z coordinate of bars; if a single value is specified,
it will be used for all bars.

zdir [{'x’, 'y’, 'z’}, default: 'z’] When plotting 2D data, the direction to use
asz ('’x’, 'y’ or’'z’).

**kwargs Other arguments are forwarded to matplotlid.azes.Azes.bar.

Returns

mpl_toolkits.mplot3d.art3d.Patch3DCollection

2.7. Toolkits 367

../../gallery/mplot3d/polys3d.html

Matplotlib, Release 3.3.0

Fig. 84: Bars3d

Quiver

Axes3D.quiver(X, Y, Z, U, V, W, /, length=1, arrow _length ratio=.3, pivot="tail’, normal-
ize=False, **kwargs)
Plot a 3D field of arrows.

The arguments could be array-like or scalars, so long as they they can be broadcast
together. The arguments can also be masked arrays. If an element in any of argument
is masked, then that corresponding quiver element will not be plotted.

Parameters

X, Y, Z [array-like] The x, y and z coordinates of the arrow locations (default
is tail of arrow; see pivot kwarg).

U, V, W [array-like] The x, y and z components of the arrow vectors.
length [float, default: 1] The length of each quiver.

arrow_length_ratio [float, default: 0.3] The ratio of the arrow head with
respect to the quiver.

pivot [{’tail’, ‘'middle’, 'tip’}, default: 'tail’] The part of the arrow that is at
the grid point; the arrow rotates about this point, hence the name pivot.

normalize [bool, default: False] Whether all arrows are normalized to have
the same length, or keep the lengths defined by u, v, and w.

**kwargs Any additional keyword arguments are delegated to

LineCollection

2D plots in 3D
Text

Axes3D.text (self, x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword,
which sets the direction to be used as the z direction.

368 Chapter 2. Tutorials

../../gallery/mplot3d/bars3d.html

Matplotlib, Release 3.3.0

Fig. 85: Quiver3d

—— curvein (x, y)
e pointsin(x, 2)

z
Fig. 86: 2dcollections3d
i
2D Text 5
6\()‘ &
x«..“’\ e el
- : 23 10
T \be =
(l,i,‘%pﬁ‘dlr:None s
| 6 f
45 g N
45 3)| o
lirsy N
0
=319 10

(&1 1), dil

Fig. 87: Text3d

369

2.7. Toolkits

../../gallery/mplot3d/quiver3d.html
../../gallery/mplot3d/2dcollections3d.html
../../gallery/mplot3d/text3d.html

Matplotlib, Release 3.3.0

Subplotting

Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have
both 2D and 3D plots in the same figure.

New in version 1.0.0: Subplotting 3D plots was added in v1.0.0. Earlier version can not do
this.

Fig. 88: Subplot3d
Mixed Subplots

370 Chapter 2. Tutorials

../../gallery/mplot3d/subplot3d.html

CHAPTER

THREE

INTERACTIVE FIGURES

When working with data, interactivity can be invaluable. The pan/zoom and mouse-location
tools built into the Matplotlib GUI windows are often sufficient, but you can also use the event
system to build customized data exploration tools.

Matplotlib ships with backends binding to several GUI toolkits (Qt, Tk, Wx, GTK, macOS,
JavaScript) and third party packages provide bindings to kivy and Jupyter Lab. For the fig-
ures to be responsive to mouse, keyboard, and paint events, the GUI event loop needs to be
integrated with an interactive prompt. We recommend using IPython (see below).

The pyplot module provides functions for explicitly creating figures that include interactive
tools, a toolbar, a tool-tip, and key bindings:

pyplot.figure Creates a new empty figure.Figure Or selects an existing figure
pyplot.subplots Creates a new figure.Figure and fills it with a grid of azes.Azes

pyplot has a notion of “The Current Figure” which can be accessed through pyplot.gcf and
a notion of "The Current Axes” accessed through pyplot.gca. Almost all of the functions in
pyplot pass through the current Figure / azes.Azes (Or create one) as appropriate.

Matplotlib keeps a reference to all of the open figures created via pyplot. figure or pyplot.
subplots so that the figures will not be garbage collected. Figures can be closed and dereg-
istered from pyplot individually via pyplot.close; all open Figures can be closed via plt.
close('all').

For more discussion of Matplotlib’s event system and integrated event loops, please read:

3.1 Interactive Figures and Asynchronous Programming

Matplotlib supports rich interactive figures by embedding figures into a GUI window. The
basic interactions of panning and zooming in an Axes to inspect your data is 'baked in’ to
Matplotlib. This is supported by a full mouse and keyboard event handling system that you
can use to build sophisticated interactive graphs.

This guide is meant to be an introduction to the low-level details of how Matplotlib integration
with a GUI event loop works. For a more practical introduction to the Matplotlib event API see
event handling system, Interactive Tutorial, and Interactive Applications using Matplotlib.

3.1.1 Event Loops

Fundamentally, all user interaction (and networking) is implemented as an infinite loop wait-
ing for events from the user (via the OS) and then doing something about it. For example, a

371

https://github.com/kivy-garden/garden.matplotlib
https://github.com/matplotlib/ipympl
https://github.com/matplotlib/interactive_tutorial
http://www.amazon.com/Interactive-Applications-using-Matplotlib-Benjamin/dp/1783988843

Matplotlib, Release 3.3.0

minimal Read Evaluate Print Loop (REPL) is

exec_count = 0
while True:

inp = input(f"[1>m # Read
ret = eval(inp) # Evaluate
print(ret) # Print
exec_count += 1 # Loop

This is missing many niceties (for example, it exits on the first exception!), but is represen-
tative of the event loops that underlie all terminals, GUIs, and servers'. In general the Read
step is waiting on some sort of I/O - be it user input or the network - while the Evaluate and
Print are responsible for interpreting the input and then doing something about it.

In practice we interact with a framework that provides a mechanism to register callbacks
to be run in response to specific events rather than directly implement the I/O loop?. For
example "when the user clicks on this button, please run this function” or “when the user hits
the 'z’ key, please run this other function”. This allows users to write reactive, event-driven,
programs without having to delve into the nitty-gritty® details of I/O. The core event loop is
sometimes referred to as “the main loop” and is typically started, depending on the library,
by methods with names like _exec, run, or start.

All GUI frameworks (Qt, Wx, Gtk, tk, OSX, or web) have some method of capturing user
interactions and passing them back to the application (for example Signal / Slot framework in
Qt) but the exact details depend on the toolkit. Matplotlib has a backend for each GUI toolkit
we support which uses the toolkit API to bridge the toolkit UI events into Matplotlib’s event
handling system. You can then use FigureCanvasBase.mpl_connect to connect your function to
Matplotlib’s event handling system. This allows you to directly interact with your data and
write GUI toolkit agnostic user interfaces.

3.1.2 Command Prompt Integration

So far, so good. We have the REPL (like the IPython terminal) that lets us interactively send
code to the interpreter and get results back. We also have the GUI toolkit that runs an event
loop waiting for user input and lets us register functions to be run when that happens. How-
ever, if we want to do both we have a problem: the prompt and the GUI event loop are both
infinite loops that each think they are in charge! In order for both the prompt and the GUI
windows to be responsive we need a method to allow the loops to ‘timeshare’ :

1. let the GUI main loop block the python process when you want interactive windows
2. let the CLI main loop block the python process and intermittently run the GUI loop
3. fully embed python in the GUI (but this is basically writing a full application)

1 A limitation of this design is that you can only wait for one input, if there is a need to multiplex between multiple
sources then the loop would look something like

fds = [...]
while True: # Loop
inp = select(fds).read() # Read
eval(inp) # Evaluate / Print

2 Or you can write your own if you must.
3 These examples are aggressively dropping many of the complexities that must be dealt with in the real world
such as keyboard interrupts, timeouts, bad input, resource allocation and cleanup, etc.

372 Chapter 3. Interactive Figures

https://www.youtube.com/watch?v=ZzfHjytDceU

Matplotlib, Release 3.3.0

Blocking the Prompt

pyplot.show Display all open figures.

pyplot.pause Run the GUI event loop for interval seconds.
backend_bases.FigureCanvasBase. Start a blocking event loop.
start_event_loop

backend_bases.FigureCanvasBase. Stop the current blocking event loop.

stop_event_loop

The simplest ”integration” is to start the GUI event loop in 'blocking’ mode and take over the
CLI. While the GUI event loop is running you can not enter new commands into the prompt
(your terminal may echo the characters typed into the terminal, but they will not be sent to
the Python interpreter because it is busy running the GUI event loop), but the figure windows
will be responsive. Once the event loop is stopped (leaving any still open figure windows non-
responsive) you will be able to use the prompt again. Re-starting the event loop will make
any open figure responsive again (and will process any queued up user interaction).

To start the event loop until all open figures are closed use pyplot.show as

pyplot.show(block=True)

To start the event loop for a fixed amount of time (in seconds) use pyplot.pause.

If you are not using pyplot you can start and stop the event loops via FigureCanvasBase.
start_event_loop and FigureCanvasBase.stop_event_loop. However, in most contexts where you
would not be using pyplot you are embedding Matplotlib in a large GUI application and the
GUI event loop should already be running for the application.

Away from the prompt, this technique can be very useful if you want to write a script that
pauses for user interaction, or displays a figure between polling for additional data. See
Scripts and functions for more details.

Input Hook integration

While running the GUI event loop in a blocking mode or explicitly handling UI events is useful,
we can do better! We really want to be able to have a usable prompt and interactive figure
windows.

We can do this using the ‘input hook’ feature of the interactive prompt. This hook is called by
the prompt as it waits for the user to type (even for a fast typist the prompt is mostly waiting
for the human to think and move their fingers). Although the details vary between prompts
the logic is roughly

1. start to wait for keyboard input

2. start the GUI event loop

3. as soon as the user hits a key, exit the GUI event loop and handle the key
4. repeat

This gives us the illusion of simultaneously having interactive GUI windows and an interactive
prompt. Most of the time the GUI event loop is running, but as soon as the user starts typing
the prompt takes over again.

This time-share technique only allows the event loop to run while python is otherwise idle and
waiting for user input. If you want the GUI to be responsive during long running code it is

3.1. Interactive Figures and Asynchronous Programming 373

Matplotlib, Release 3.3.0

necessary to periodically flush the GUI event queue as described above. In this case it is your
code, not the REPL, which is blocking the process so you need to handle the "time-share”
manually. Conversely, a very slow figure draw will block the prompt until it finishes drawing.

3.1.3 Full embedding

It is also possible to go the other direction and fully embed figures (and a Python interpreter)
in a rich native application. Matplotlib provides classes for each toolkit which can be di-
rectly embedded in GUI applications (this is how the built-in windows are implemented!).
See user interfaces for more details.

3.1.4 Scripts and functions

backend_bases.FigureCanvasBase. Flush the GUI events for the figure.

flush_events

backend_bases.FigureCanvasBase. draw_idle Request a widget redraw once control re-
turns to the GUI event loop.

figure.Figure. ginput Blocking call to interact with a figure.

pyplot.ginput Blocking call to interact with a figure.

pyplot.show Display all open figures.

pyplot.pause Run the GUI event loop for interval seconds.

There are several use-cases for using interactive figures in scripts:
* capture user input to steer the script
» progress updates as a long running script progresses

* streaming updates from a data source

Blocking functions

If you only need to collect points in an Axes you can use figure.Figure. ginput Or more generally
the tools from bilocking input the tools will take care of starting and stopping the event loop
for you. However if you have written some custom event handling or are using widgets you
will need to manually run the GUI event loop using the methods described above.

You can also use the methods described in Blocking the Prompt to suspend run the GUI event
loop. Once the loop exits your code will resume. In general, any place you would use time.
sleep you can use pyplot.pause instead with the added benefit of interactive figures.

For example, if you want to poll for data you could use something like

fig, ax = plt.subplots()
1n, = ax.plot([], [1)

while True:
X, y = get_new_data()
1n.set_data(x, y)
plt.pause (1)

which would poll for new data and update the figure at 1Hz.

374 Chapter 3. Interactive Figures

https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/library/time.html#time.sleep
https://docs.python.org/3/library/time.html#time.sleep

Matplotlib, Release 3.3.0

Explicitly spinning the Event Loop

backend_bases.FigureCanvasBase. Flush the GUI events for the figure.
flush_events
backend_bases.FigureCanvasBase.draw_idle Request a widget redraw once control re-

turns to the GUI event loop.

If you have open windows that have pending Ul events (mouse clicks, button presses, or
draws) you can explicitly process those events by calling FigureCanvasBase. flush_events. This
will run the GUI event loop until all UI events currently waiting have been processed. The
exact behavior is backend-dependent but typically events on all figure are processed and only
events waiting to be processed (not those added during processing) will be handled.

For example

import time

import matplotlib.pyplot as plt
import numpy as np

plt.ion()

fig, ax = plt.subplots()
th = np.linspace(0, 2+*np.pi, 512)
ax.set_ylim(-1.5, 1.5)

1n, = ax.plot(th, np.sin(th))
def slow_loop(N, 1n):
for j in range(N):
time.sleep(.l) # to simulate some work

1n.figure.canvas.flush_events()

slow_loop(100, 1n)

While this will feel a bit laggy (as we are only processing user input every 100ms whereas
20-30ms is what feels “responsive”) it will respond.

If you make changes to the plot and want it re-rendered you will need to call draw_idle to
request that the canvas be re-drawn. This method can be thought of draw_soon in analogy to
asyncio.loop.call_soon.

We can add this our example above as

def slow_loop(N, 1n):
for j in range(N):
time.sleep(.1) # to simulate some work
if j % 10:
1n.set_ydata(np.sin(((j // 10) % 5 * th)))
In.figure.canvas.draw_idle()

1n.figure.canvas.flush_events()

slow_loop(100, 1n)

The more frequently you call FigureCanvasBase. flush_events the more responsive your figure
will feel but at the cost of spending more resources on the visualization and less on your
computation.

3.1. Interactive Figures and Asynchronous Programming 375

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon

Matplotlib, Release 3.3.0

3.1.5 Stale Artists

Artists (as of Matplotlib 1.5) have a stale attribute which is True if the internal state of the
artist has changed since the last time it was rendered. By default the stale state is propagated
up to the Artists parents in the draw tree, e.g., if the color of a Line2D instance is changed, the
azes.Azes and figure.Figure that contain it will also be marked as ”stale”. Thus, fig.stale will
report if any artist in the figure has been modified and is out of sync with what is displayed on
the screen. This is intended to be used to determine if draw_idle should be called to schedule
a re-rendering of the figure.

Each artist has a Artist.stale_callback attribute which holds a callback with the signature

def callback(self: Artist, val: bool) -> None:

which by default is set to a function that forwards the stale state to the artist’s parent. If you
wish to suppress a given artist from propagating set this attribute to None.

figure.Figure instances do not have a containing artist and their default callback is None. If
you call pyplot.ion and are not in IPython we will install a callback to invoke draw_idle when-
ever the figure.Figure becomes stale. In IPython we use the 'post_execute' hook to invoke
draw_idle on any stale figures after having executed the user’s input, but before returning the
prompt to the user. If you are not using pyplot you can use the callback Figure.stale_callback
attribute to be notified when a figure has become stale.

3.1.6 Draw ldle

backend_bases.FigureCanvasBase. draw Render the Figure.

backend_bases.FigureCanvasBase. draw_idle Request a widget redraw once control re-
turns to the GUI event loop.

backend_bases.FigureCanvasBase. Flush the GUI events for the figure.

flush_events

In almost all cases, we recommend using backend_bases.FigureCanvasBase.draw_idle OVer
backend_bases.FigureCanvasBase. draw. draw forces a rendering of the figure whereas draw_idle
schedules a rendering the next time the GUI window is going to re-paint the screen. This
improves performance by only rendering pixels that will be shown on the screen. If you want
to be sure that the screen is updated as soon as possible do

fig.canvas.draw_idle()
fig.canvas.flush_events()

3.1.7 Threading

Most GUI frameworks require that all updates to the screen, and hence their main event loop,
run on the main thread. This makes pushing periodic updates of a plot to a background thread
impossible. Although it seems backwards, it is typically easier to push your computations to
a background thread and periodically update the figure on the main thread.

In general Matplotlib is not thread safe. If you are going to update 4rtist objects in one thread
and draw from another you should make sure that you are locking in the critical sections.

376 Chapter 3. Interactive Figures

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.3.0

3.1.8 Eventloop integration mechanism

CPython / readline

The Python C API provides a hook, Py0S_InputHook, to register a function to be run “The func-
tion will be called when Python’s interpreter prompt is about to become idle and wait for
user input from the terminal.”. This hook can be used to integrate a second event loop (the
GUI event loop) with the python input prompt loop. The hook functions typically exhaust all
pending events on the GUI event queue, run the main loop for a short fixed amount of time,
or run the event loop until a key is pressed on stdin.

Matplotlib does not currently do any management of Py0S_InputHook due to the wide range of
ways that Matplotlib is used. This management is left to downstream libraries - either user
code or the shell. Interactive figures, even with matplotlib in ’interactive mode’, may not
work in the vanilla python repl if an appropriate Py0S_InputHook is not registered.

Input hooks, and helpers to install them, are usually included with the python bindings for
GUI toolkits and may be registered on import. IPython also ships input hook functions for all
of the GUI frameworks Matplotlib supports which can be installed via %matplotlib. This is the
recommended method of integrating Matplotlib and a prompt.

IPython / prompt toolkit

With IPython >= 5.0 IPython has changed from using cpython’s readline based prompt to a
prompt_toolkit based prompt. prompt_toolkit has the same conceptual input hook, which is
fed into prompt_toolkit via the IPython.terminal.interactiveshell.TerminalInteractiveShell.
inputhook () method. The source for the prompt_toolkit input hooks lives at IPython.terminal.
pt_inputhooks

3.2 Event handling and picking

Matplotlib works with a number of user interface toolkits (wxpython, tkinter, qt4, gtk, and
macosx) and in order to support features like interactive panning and zooming of figures, it
is helpful to the developers to have an API for interacting with the figure via key presses and
mouse movements that is “GUI neutral” so we don’t have to repeat a lot of code across the dif-
ferent user interfaces. Although the event handling API is GUI neutral, it is based on the GTK
model, which was the first user interface matplotlib supported. The events that are triggered
are also a bit richer vis-a-vis matplotlib than standard GUI events, including information like
which matplotiib.azes.Azes the event occurred in. The events also understand the matplotlib
coordinate system, and report event locations in both pixel and data coordinates.

3.2.1 Event connections

To receive events, you need to write a callback function and then connect your function to the
event manager, which is part of the FigureCanvasBase. Here is a simple example that prints
the location of the mouse click and which button was pressed:

fig, ax = plt.subplots()
ax.plot(np.random.rand(10))

(continues on next page)

3.2. Event handling and picking 377

https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook
https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook
https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook

Matplotlib, Release 3.3.0

(continued from previous page)

def onclick(event):
print (' click: button=/d, x=/d, y=/d, xdata=/f, ydata=/f' %
('double' if event.dblclick else 'single', event.button,
event.x, event.y, event.xdata, event.ydata))

cid = fig.canvas.mpl_connect('button_press_event', onclick)

The FigureCanvas method mpl_connect () returns a connection id which is simply an integer.
When you want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Note: The canvas retains only weak references to instance methods used as callbacks.
Therefore, you need to retain a reference to instances owning such methods. Otherwise the
instance will be garbage-collected and the callback will vanish.

This does not affect free functions used as callbacks.

Here are the events that you can connect to, the class instances that are sent back to you
when the event occurs, and the event descriptions:

Event name Class Description

‘but- MouseFvent mouse button is pressed

ton press event’

‘but- MouseFEvent mouse button is released

ton release event’

‘close_event’ CloseEvent figure is closed

‘draw_event’ DrawEvent canvas has been drawn (but screen widget not up-
dated yet)

’key press_event’ KeyEvent key is pressed

'key release event’ | KeyEvent key is released

‘mo- MouseEvent mouse moves

tion notify event’

‘pick event’ PickEvent artist in the canvas is selected

‘resize event’ ResizeFvent | figure canvas is resized

‘scroll event’ MouseEvent mouse scroll wheel is rolled

‘figure enter event’ | LocationEvent mouse enters a new figure

‘figure leave event’ | LocationEvent mouse leaves a figure

‘axes_enter event’ LocationEvent mouse enters a new axes

‘axes leave event’ LocationEvent mouse leaves an axes

3.2.2 Event attributes
All matplotlib events inherit from the base class matplotiib.backend_bases.Event, Which store
the attributes:

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

378 Chapter 3. Interactive Figures

Matplotlib, Release 3.3.0

The most common events that are the bread and butter of event handling are key press/release
events and mouse press/release and movement events. The KeyEvent and MouseEvent classes
that handle these events are both derived from the LocationEvent, which has the following
attributes

x X position - pixels from left of canvas

y v position - pixels from bottom of canvas
inaxes the Azes instance if mouse is over axes
xdata X coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a
mouse is pressed:

from matplotlib import pyplot as plt

class LineBuilder:
def __init__(self, line):
self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect('button_press_event', self)

def __call__(self, event):
print('click', event)
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self .ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line.figure.canvas.draw()

fig = plt.figure()

ax = fig.add_subplot(111)
ax.set_title('click to build line segments')
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

plt.show()

The MouseEvent that we just used is a LocationEvent, SO we have access to the data and pixel
coordinates in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ’down’ (up and down are used for scroll
events)

key the key pressed: None, any character, ’shift’, ‘win’, or control’

Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangie instance but will move its
x,y location when dragged. Hint: you will need to store the original xy location of the rectangle
which is stored as rect.xy and connect to the press, motion and release mouse events. When
the mouse is pressed, check to see if the click occurs over your rectangle (see matplotlib.
patches.Rectangle.contains()) and if it does, store the rectangle xy and the location of the
mouse click in data coords. In the motion event callback, compute the deltax and deltay of

3.2. Event handling and picking 379

Matplotlib, Release 3.3.0

the mouse movement, and add those deltas to the origin of the rectangle you stored. The
redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect

self.press = None

def connect(self):

'connect to all the events we need'

self.cidpress = self.rect.figure.canvas.mpl_connect(
'button_press_event', self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
'button_release_event', self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
'motion_notify_event', self.on_motion)

def on_press(self, event):
'on button press we will see if the mouse is over us and store some data'
if event.inaxes != self.rect.axes: return

contains, attrd = self.rect.contains(event)
if not contains: return

print('event contains', self.rect.xy)

x0, y0O = self.rect.xy

self .press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
'on motion we will move the rect if the mouse is over us'
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, yO, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ('x0=)f, zpress=/f, event.zdata=/f, dz=/f, xzO+dz=/f' J
(20, zpress, event.zdata, dz, zO+dz))
self.rect.set_x(x0+dx)
self.rect.set_y(yO+dy)

self .rect.figure.canvas.draw()

def on_release(self, event):
'on release we reset the press data'
self.press = None
self .rect.figure.canvas.draw()

def disconnect(self):
'disconnect all the stored connection ids'
self.rect.figure.canvas.mpl_disconnect (self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self .rect.figure.canvas.mpl_disconnect(self.cidmotion)

(continues on next page)

380 Chapter 3. Interactive Figures

Matplotlib, Release 3.3.0

(continued from previous page)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:
dr = DraggableRectangle(rect)
dr.connect ()
drs.append(dr)

plt.show()

Extra credit: Use blitting to make the animated drawing faster and smoother.

Extra credit solution:

Draggable rectangle with blitting.
import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time
def __init__(self, rect):
self.rect = rect
self .press = None
self.background = None

def connect(self):

'connect to all the events we need'

self .cidpress = self.rect.figure.canvas.mpl_connect(
'button_press_event', self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
'button_release_event', self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
'motion_notify_event', self.on_motion)

def on_press(self, event):
'on button press we will see if the mouse is over us and store some data'
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print('event contains', self.rect.xy)
x0, y0O = self.rect.xy
self .press = x0, yO, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pizel buffer
canvas = self.rect.figure.canvas

axes = self.rect.axes

self.rect.set_animated(True)

canvas.draw()

self .background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

(continues on next page)

3.2. Event handling and picki