matplotlib.pyplot.spy¶
-
matplotlib.pyplot.
spy
(Z, precision=0, marker=None, markersize=None, aspect='equal', origin='upper', \*\*kwargs)[source]¶ Plot the sparsity pattern of a 2D array.
This visualizes the non-zero values of the array.
Two plotting styles are available: image and marker. Both are available for full arrays, but only the marker style works for
scipy.sparse.spmatrix
instances.Image style
If marker and markersize are None,
imshow
is used. Any extra remaining keyword arguments are passed to this method.Marker style
If Z is a
scipy.sparse.spmatrix
or marker or markersize are None, aLine2D
object will be returned with the value of marker determining the marker type, and any remaining keyword arguments passed toplot
.Parameters: - Zarray-like (M, N)
The array to be plotted.
- precisionfloat or 'present', optional, default: 0
If precision is 0, any non-zero value will be plotted. Otherwise, values of \(|Z| > precision\) will be plotted.
For
scipy.sparse.spmatrix
instances, you can also pass 'present'. In this case any value present in the array will be plotted, even if it is identically zero.- origin{'upper', 'lower'}, optional
Place the [0, 0] index of the array in the upper left or lower left corner of the axes. The convention 'upper' is typically used for matrices and images. If not given,
rcParams["image.origin"]
(default: 'upper') is used, defaulting to 'upper'.- aspect{'equal', 'auto', None} or float, optional
Controls the aspect ratio of the axes. The aspect is of particular relevance for images since it may distort the image, i.e. pixel will not be square.
This parameter is a shortcut for explicitly calling
Axes.set_aspect
. See there for further details.- 'equal': Ensures an aspect ratio of 1. Pixels will be square.
- 'auto': The axes is kept fixed and the aspect is adjusted so that the data fit in the axes. In general, this will result in non-square pixels.
- None: Use
rcParams["image.aspect"]
(default: 'equal').
Default: 'equal'
Returns: Other Parameters: - **kwargs
The supported additional parameters depend on the plotting style.
For the image style, you can pass the following additional parameters of
imshow
:For the marker style, you can pass any
Line2D
property except for linestyle:Property Description agg_filter
a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha
float or None animated
bool antialiased
or aabool clip_box
Bbox
clip_on
bool clip_path
Patch or (Path, Transform) or None color
or ccolor contains
callable dash_capstyle
{'butt', 'round', 'projecting'} dash_joinstyle
{'miter', 'round', 'bevel'} dashes
sequence of floats (on/off ink in points) or (None, None) data
(2, N) array or two 1D arrays drawstyle
or ds{'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure
Figure
fillstyle
{'full', 'left', 'right', 'bottom', 'top', 'none'} gid
str in_layout
bool label
object linestyle
or ls{'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth
or lwfloat marker
marker style markeredgecolor
or meccolor markeredgewidth
or mewfloat markerfacecolor
or mfccolor markerfacecoloralt
or mfcaltcolor markersize
or msfloat markevery
None or int or (int, int) or slice or List[int] or float or (float, float) path_effects
AbstractPathEffect
picker
float or callable[[Artist, Event], Tuple[bool, dict]] pickradius
float rasterized
bool or None sketch_params
(scale: float, length: float, randomness: float) snap
bool or None solid_capstyle
{'butt', 'round', 'projecting'} solid_joinstyle
{'miter', 'round', 'bevel'} transform
matplotlib.transforms.Transform
url
str visible
bool xdata
1D array ydata
1D array zorder
float