You are reading an old version of the documentation (v3.1.0). For the latest version see https://matplotlib.org/stable/gallery/mplot3d/surface3d_radial.html
Version 3.1.0
matplotlib
Fork me on GitHub

Related Topics

3D surface with polar coordinatesΒΆ

Demonstrates plotting a surface defined in polar coordinates. Uses the reversed version of the YlGnBu color map. Also demonstrates writing axis labels with latex math mode.

Example contributed by Armin Moser.

../../_images/sphx_glr_surface3d_radial_001.png
# This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import

import matplotlib.pyplot as plt
import numpy as np


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# Create the mesh in polar coordinates and compute corresponding Z.
r = np.linspace(0, 1.25, 50)
p = np.linspace(0, 2*np.pi, 50)
R, P = np.meshgrid(r, p)
Z = ((R**2 - 1)**2)

# Express the mesh in the cartesian system.
X, Y = R*np.cos(P), R*np.sin(P)

# Plot the surface.
ax.plot_surface(X, Y, Z, cmap=plt.cm.YlGnBu_r)

# Tweak the limits and add latex math labels.
ax.set_zlim(0, 1)
ax.set_xlabel(r'$\phi_\mathrm{real}$')
ax.set_ylabel(r'$\phi_\mathrm{im}$')
ax.set_zlabel(r'$V(\phi)$')

plt.show()

Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by Sphinx-Gallery