.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_text_annotations.py: Annotations =========== Annotating text with Matplotlib. .. contents:: Table of Contents :depth: 3 .. _annotations-tutorial: Basic annotation ================ The uses of the basic :func:`~matplotlib.pyplot.text` will place text at an arbitrary position on the Axes. A common use case of text is to annotate some feature of the plot, and the :func:`~matplotlib.Axes.annotate` method provides helper functionality to make annotations easy. In an annotation, there are two points to consider: the location being annotated represented by the argument ``xy`` and the location of the text ``xytext``. Both of these arguments are ``(x,y)`` tuples. .. figure:: ../../gallery/pyplots/images/sphx_glr_annotation_basic_001.png :target: ../../gallery/pyplots/annotation_basic.html :align: center :scale: 50 Annotation Basic In this example, both the ``xy`` (arrow tip) and ``xytext`` locations (text location) are in data coordinates. There are a variety of other coordinate systems one can choose -- you can specify the coordinate system of ``xy`` and ``xytext`` with one of the following strings for ``xycoords`` and ``textcoords`` (default is 'data') ==================== ==================================================== argument coordinate system ==================== ==================================================== 'figure points' points from the lower left corner of the figure 'figure pixels' pixels from the lower left corner of the figure 'figure fraction' 0,0 is lower left of figure and 1,1 is upper right 'axes points' points from lower left corner of axes 'axes pixels' pixels from lower left corner of axes 'axes fraction' 0,0 is lower left of axes and 1,1 is upper right 'data' use the axes data coordinate system ==================== ==================================================== For example to place the text coordinates in fractional axes coordinates, one could do:: ax.annotate('local max', xy=(3, 1), xycoords='data', xytext=(0.8, 0.95), textcoords='axes fraction', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='top', ) For physical coordinate systems (points or pixels) the origin is the bottom-left of the figure or axes. Optionally, you can enable drawing of an arrow from the text to the annotated point by giving a dictionary of arrow properties in the optional keyword argument ``arrowprops``. ==================== ===================================================== ``arrowprops`` key description ==================== ===================================================== width the width of the arrow in points frac the fraction of the arrow length occupied by the head headwidth the width of the base of the arrow head in points shrink move the tip and base some percent away from the annotated point and text \*\*kwargs any key for :class:`matplotlib.patches.Polygon`, e.g., ``facecolor`` ==================== ===================================================== In the example below, the ``xy`` point is in native coordinates (``xycoords`` defaults to 'data'). For a polar axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate system. :class:`matplotlib.text.Text` keyword args like ``horizontalalignment``, ``verticalalignment`` and ``fontsize`` are passed from `~matplotlib.Axes.annotate` to the ``Text`` instance. .. figure:: ../../gallery/pyplots/images/sphx_glr_annotation_polar_001.png :target: ../../gallery/pyplots/annotation_polar.html :align: center :scale: 50 Annotation Polar For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see :ref:`plotting-guide-annotation` and :doc:`/gallery/text_labels_and_annotations/annotation_demo`. Do not proceed unless you have already read :ref:`annotations-tutorial`, :func:`~matplotlib.pyplot.text` and :func:`~matplotlib.pyplot.annotate`! .. _plotting-guide-annotation: Advanced Annotation =================== Annotating with Text with Box ----------------------------- Let's start with a simple example. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_text_arrow_001.png :target: ../../gallery/userdemo/annotate_text_arrow.html :align: center :scale: 50 Annotate Text Arrow The :func:`~matplotlib.pyplot.text` function in the pyplot module (or text method of the Axes class) takes bbox keyword argument, and when given, a box around the text is drawn. :: bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2) t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45, size=15, bbox=bbox_props) The patch object associated with the text can be accessed by:: bb = t.get_bbox_patch() The return value is an instance of FancyBboxPatch and the patch properties like facecolor, edgewidth, etc. can be accessed and modified as usual. To change the shape of the box, use the *set_boxstyle* method. :: bb.set_boxstyle("rarrow", pad=0.6) The arguments are the name of the box style with its attributes as keyword arguments. Currently, following box styles are implemented. ========== ============== ========================== Class Name Attrs ========== ============== ========================== Circle ``circle`` pad=0.3 DArrow ``darrow`` pad=0.3 LArrow ``larrow`` pad=0.3 RArrow ``rarrow`` pad=0.3 Round ``round`` pad=0.3,rounding_size=None Round4 ``round4`` pad=0.3,rounding_size=None Roundtooth ``roundtooth`` pad=0.3,tooth_size=None Sawtooth ``sawtooth`` pad=0.3,tooth_size=None Square ``square`` pad=0.3 ========== ============== ========================== .. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_fancybox_demo_001.png :target: ../../gallery/shapes_and_collections/fancybox_demo.html :align: center :scale: 50 Fancybox Demo Note that the attribute arguments can be specified within the style name with separating comma (this form can be used as "boxstyle" value of bbox argument when initializing the text instance) :: bb.set_boxstyle("rarrow,pad=0.6") Annotating with Arrow --------------------- The :func:`~matplotlib.pyplot.annotate` function in the pyplot module (or annotate method of the Axes class) is used to draw an arrow connecting two points on the plot. :: ax.annotate("Annotation", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='offset points', ) This annotates a point at ``xy`` in the given coordinate (``xycoords``) with the text at ``xytext`` given in ``textcoords``. Often, the annotated point is specified in the *data* coordinate and the annotating text in *offset points*. See :func:`~matplotlib.pyplot.annotate` for available coordinate systems. An arrow connecting two points (xy & xytext) can be optionally drawn by specifying the ``arrowprops`` argument. To draw only an arrow, use empty string as the first argument. :: ax.annotate("", xy=(0.2, 0.2), xycoords='data', xytext=(0.8, 0.8), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), ) .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple01_001.png :target: ../../gallery/userdemo/annotate_simple01.html :align: center :scale: 50 Annotate Simple01 The arrow drawing takes a few steps. 1. a connecting path between two points are created. This is controlled by ``connectionstyle`` key value. 2. If patch object is given (*patchA* & *patchB*), the path is clipped to avoid the patch. 3. The path is further shrunk by given amount of pixels (*shrinkA* & *shrinkB*) 4. The path is transmuted to arrow patch, which is controlled by the ``arrowstyle`` key value. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_explain_001.png :target: ../../gallery/userdemo/annotate_explain.html :align: center :scale: 50 Annotate Explain The creation of the connecting path between two points is controlled by ``connectionstyle`` key and the following styles are available. ========== ============================================= Name Attrs ========== ============================================= ``angle`` angleA=90,angleB=0,rad=0.0 ``angle3`` angleA=90,angleB=0 ``arc`` angleA=0,angleB=0,armA=None,armB=None,rad=0.0 ``arc3`` rad=0.0 ``bar`` armA=0.0,armB=0.0,fraction=0.3,angle=None ========== ============================================= Note that "3" in ``angle3`` and ``arc3`` is meant to indicate that the resulting path is a quadratic spline segment (three control points). As will be discussed below, some arrow style options can only be used when the connecting path is a quadratic spline. The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning : The behavior of the ``bar`` style is currently not well defined, it may be changed in the future). .. figure:: ../../gallery/userdemo/images/sphx_glr_connectionstyle_demo_001.png :target: ../../gallery/userdemo/connectionstyle_demo.html :align: center :scale: 50 Connectionstyle Demo The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given ``arrowstyle``. ========== ============================================= Name Attrs ========== ============================================= ``-`` None ``->`` head_length=0.4,head_width=0.2 ``-[`` widthB=1.0,lengthB=0.2,angleB=None ``|-|`` widthA=1.0,widthB=1.0 ``-|>`` head_length=0.4,head_width=0.2 ``<-`` head_length=0.4,head_width=0.2 ``<->`` head_length=0.4,head_width=0.2 ``<|-`` head_length=0.4,head_width=0.2 ``<|-|>`` head_length=0.4,head_width=0.2 ``fancy`` head_length=0.4,head_width=0.4,tail_width=0.4 ``simple`` head_length=0.5,head_width=0.5,tail_width=0.2 ``wedge`` tail_width=0.3,shrink_factor=0.5 ========== ============================================= .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_fancyarrow_demo_001.png :target: ../../gallery/text_labels_and_annotations/fancyarrow_demo.html :align: center :scale: 50 Fancyarrow Demo Some arrowstyles only work with connection styles that generate a quadratic-spline segment. They are ``fancy``, ``simple``, and ``wedge``. For these arrow styles, you must use the "angle3" or "arc3" connection style. If the annotation string is given, the patchA is set to the bbox patch of the text by default. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple02_001.png :target: ../../gallery/userdemo/annotate_simple02.html :align: center :scale: 50 Annotate Simple02 As in the text command, a box around the text can be drawn using the ``bbox`` argument. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple03_001.png :target: ../../gallery/userdemo/annotate_simple03.html :align: center :scale: 50 Annotate Simple03 By default, the starting point is set to the center of the text extent. This can be adjusted with ``relpos`` key value. The values are normalized to the extent of the text. For example, (0,0) means lower-left corner and (1,1) means top-right. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple04_001.png :target: ../../gallery/userdemo/annotate_simple04.html :align: center :scale: 50 Annotate Simple04 Placing Artist at the anchored location of the Axes --------------------------------------------------- There are classes of artists that can be placed at an anchored location in the Axes. A common example is the legend. This type of artist can be created by using the OffsetBox class. A few predefined classes are available in ``mpl_toolkits.axes_grid1.anchored_artists`` others in ``matplotlib.offsetbox`` :: from matplotlib.offsetbox import AnchoredText at = AnchoredText("Figure 1a", prop=dict(size=15), frameon=True, loc='upper left', ) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) .. figure:: ../../gallery/userdemo/images/sphx_glr_anchored_box01_001.png :target: ../../gallery/userdemo/anchored_box01.html :align: center :scale: 50 Anchored Box01 The *loc* keyword has same meaning as in the legend command. A simple application is when the size of the artist (or collection of artists) is known in pixel size during the time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius = 10 pixel), you can utilize ``AnchoredDrawingArea``. The instance is created with a size of the drawing area (in pixels), and arbitrary artists can added to the drawing area. Note that the extents of the artists that are added to the drawing area are not related to the placement of the drawing area itself. Only the initial size matters. :: from mpl_toolkits.axes_grid1.anchored_artists import AnchoredDrawingArea ada = AnchoredDrawingArea(20, 20, 0, 0, loc='upper right', pad=0., frameon=False) p1 = Circle((10, 10), 10) ada.drawing_area.add_artist(p1) p2 = Circle((30, 10), 5, fc="r") ada.drawing_area.add_artist(p2) The artists that are added to the drawing area should not have a transform set (it will be overridden) and the dimensions of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above example are 10 pixels and 5 pixels, respectively. .. figure:: ../../gallery/userdemo/images/sphx_glr_anchored_box02_001.png :target: ../../gallery/userdemo/anchored_box02.html :align: center :scale: 50 Anchored Box02 Sometimes, you want your artists to scale with the data coordinate (or coordinates other than canvas pixels). You can use ``AnchoredAuxTransformBox`` class. This is similar to ``AnchoredDrawingArea`` except that the extent of the artist is determined during the drawing time respecting the specified transform. :: from mpl_toolkits.axes_grid1.anchored_artists import AnchoredAuxTransformBox box = AnchoredAuxTransformBox(ax.transData, loc='upper left') el = Ellipse((0,0), width=0.1, height=0.4, angle=30) # in data coordinates! box.drawing_area.add_artist(el) The ellipse in the above example will have width and height corresponding to 0.1 and 0.4 in data coordinates and will be automatically scaled when the view limits of the axes change. .. figure:: ../../gallery/userdemo/images/sphx_glr_anchored_box03_001.png :target: ../../gallery/userdemo/anchored_box03.html :align: center :scale: 50 Anchored Box03 As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created). .. figure:: ../../gallery/userdemo/images/sphx_glr_anchored_box04_001.png :target: ../../gallery/userdemo/anchored_box04.html :align: center :scale: 50 Anchored Box04 Note that unlike the legend, the ``bbox_transform`` is set to IdentityTransform by default. Using Complex Coordinates with Annotations ------------------------------------------ The Annotation in matplotlib supports several types of coordinates as described in :ref:`annotations-tutorial`. For an advanced user who wants more control, it supports a few other options. 1. :class:`~matplotlib.transforms.Transform` instance. For example, :: ax.annotate("Test", xy=(0.5, 0.5), xycoords=ax.transAxes) is identical to :: ax.annotate("Test", xy=(0.5, 0.5), xycoords="axes fraction") With this, you can annotate a point in other axes. :: ax1, ax2 = subplot(121), subplot(122) ax2.annotate("Test", xy=(0.5, 0.5), xycoords=ax1.transData, xytext=(0.5, 0.5), textcoords=ax2.transData, arrowprops=dict(arrowstyle="->")) 2. :class:`~matplotlib.artist.Artist` instance. The xy value (or xytext) is interpreted as a fractional coordinate of the bbox (return value of *get_window_extent*) of the artist. :: an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data", va="center", ha="center", bbox=dict(boxstyle="round", fc="w")) an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1, # (1,0.5) of the an1's bbox xytext=(30,0), textcoords="offset points", va="center", ha="left", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple_coord01_001.png :target: ../../gallery/userdemo/annotate_simple_coord01.html :align: center :scale: 50 Annotation with Simple Coordinates Note that it is your responsibility that the extent of the coordinate artist (*an1* in above example) is determined before *an2* gets drawn. In most cases, it means that *an2* needs to be drawn later than *an1*. 3. A callable object that returns an instance of either :class:`~matplotlib.transforms.BboxBase` or :class:`~matplotlib.transforms.Transform`. If a transform is returned, it is the same as 1 and if a bbox is returned, it is the same as 2. The callable object should take a single argument of the renderer instance. For example, the following two commands give identical results :: an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1, xytext=(30,0), textcoords="offset points") an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1.get_window_extent, xytext=(30,0), textcoords="offset points") 4. A tuple of two coordinate specifications. The first item is for the x-coordinate and the second is for the y-coordinate. For example, :: annotate("Test", xy=(0.5, 1), xycoords=("data", "axes fraction")) 0.5 is in data coordinates, and 1 is in normalized axes coordinates. You may use an artist or transform as with a tuple. For example, .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple_coord02_001.png :target: ../../gallery/userdemo/annotate_simple_coord02.html :align: center :scale: 50 Annotation with Simple Coordinates 2 5. Sometimes, you want your annotation with some "offset points", not from the annotated point but from some other point. :class:`~matplotlib.text.OffsetFrom` is a helper class for such cases. .. figure:: ../../gallery/userdemo/images/sphx_glr_annotate_simple_coord03_001.png :target: ../../gallery/userdemo/annotate_simple_coord03.html :align: center :scale: 50 Annotation with Simple Coordinates 3 You may take a look at this example :doc:`/gallery/text_labels_and_annotations/annotation_demo`. Using ConnectionPatch --------------------- The ConnectionPatch is like an annotation without text. While the annotate function is recommended in most situations, the ConnectionPatch is useful when you want to connect points in different axes. :: from matplotlib.patches import ConnectionPatch xy = (0.2, 0.2) con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data", axesA=ax1, axesB=ax2) ax2.add_artist(con) The above code connects point xy in the data coordinates of ``ax1`` to point xy in the data coordinates of ``ax2``. Here is a simple example. .. figure:: ../../gallery/userdemo/images/sphx_glr_connect_simple01_001.png :target: ../../gallery/userdemo/connect_simple01.html :align: center :scale: 50 Connect Simple01 While the ConnectionPatch instance can be added to any axes, you may want to add it to the axes that is latest in drawing order to prevent overlap by other axes. Advanced Topics ~~~~~~~~~~~~~~~ Zoom effect between Axes ------------------------ ``mpl_toolkits.axes_grid1.inset_locator`` defines some patch classes useful for interconnecting two axes. Understanding the code requires some knowledge of how mpl's transform works. But, utilizing it will be straight forward. .. figure:: ../../gallery/subplots_axes_and_figures/images/sphx_glr_axes_zoom_effect_001.png :target: ../../gallery/subplots_axes_and_figures/axes_zoom_effect.html :align: center :scale: 50 Axes Zoom Effect Define Custom BoxStyle ---------------------- You can use a custom box style. The value for the ``boxstyle`` can be a callable object in the following forms.:: def __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.): ''' Given the location and size of the box, return the path of the box around it. - *x0*, *y0*, *width*, *height* : location and size of the box - *mutation_size* : a reference scale for the mutation. - *aspect_ratio* : aspect-ratio for the mutation. ''' path = ... return path Here is a complete example. .. figure:: ../../gallery/userdemo/images/sphx_glr_custom_boxstyle01_001.png :target: ../../gallery/userdemo/custom_boxstyle01.html :align: center :scale: 50 Custom Boxstyle01 However, it is recommended that you derive from the matplotlib.patches.BoxStyle._Base as demonstrated below. .. figure:: ../../gallery/userdemo/images/sphx_glr_custom_boxstyle02_001.png :target: ../../gallery/userdemo/custom_boxstyle02.html :align: center :scale: 50 Custom Boxstyle02 Similarly, you can define a custom ConnectionStyle and a custom ArrowStyle. See the source code of ``lib/matplotlib/patches.py`` and check how each style class is defined. .. _sphx_glr_download_tutorials_text_annotations.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: annotations.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: annotations.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature Keywords: matplotlib code example, codex, python plot, pyplot `Gallery generated by Sphinx-Gallery `_