"""
An experimental support for curvilinear grid.
"""
from itertools import chain
from .grid_finder import GridFinder
from .axislines import AxisArtistHelper, GridHelperBase
from .axis_artist import AxisArtist
from matplotlib.transforms import Affine2D, IdentityTransform
import numpy as np
from matplotlib.path import Path
[docs]class FixedAxisArtistHelper(AxisArtistHelper.Fixed):
"""
Helper class for a fixed axis.
"""
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super().__init__(loc=side)
self.grid_helper = grid_helper
if nth_coord_ticks is None:
nth_coord_ticks = self.nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.side = side
self._limits_inverted = False
[docs] def update_lim(self, axes):
self.grid_helper.update_lim(axes)
if self.nth_coord == 0:
xy1, xy2 = axes.get_ylim()
else:
xy1, xy2 = axes.get_xlim()
if xy1 > xy2:
self._limits_inverted = True
else:
self._limits_inverted = False
[docs] def change_tick_coord(self, coord_number=None):
if coord_number is None:
self.nth_coord_ticks = 1 - self.nth_coord_ticks
elif coord_number in [0, 1]:
self.nth_coord_ticks = coord_number
else:
raise Exception("wrong coord number")
[docs] def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label"""
g = self.grid_helper
if self._limits_inverted:
side = {"left":"right","right":"left",
"top":"bottom", "bottom":"top"}[self.side]
else:
side = self.side
ti1 = g.get_tick_iterator(self.nth_coord_ticks, side)
ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, side, minor=True)
#ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True)
return chain(ti1, ti2), iter([])
[docs]class FloatingAxisArtistHelper(AxisArtistHelper.Floating):
def __init__(self, grid_helper, nth_coord, value, axis_direction=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super().__init__(nth_coord, value)
self.value = value
self.grid_helper = grid_helper
self._extremes = None, None
self._get_line_path = None # a method that returns a Path.
self._line_num_points = 100 # number of points to create a line
[docs] def set_extremes(self, e1, e2):
self._extremes = e1, e2
[docs] def update_lim(self, axes):
self.grid_helper.update_lim(axes)
x1, x2 = axes.get_xlim()
y1, y2 = axes.get_ylim()
grid_finder = self.grid_helper.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
extremes = list(extremes)
e1, e2 = self._extremes # ranges of other coordinates
if self.nth_coord == 0:
if e1 is not None:
extremes[2] = max(e1, extremes[2])
if e2 is not None:
extremes[3] = min(e2, extremes[3])
elif self.nth_coord == 1:
if e1 is not None:
extremes[0] = max(e1, extremes[0])
if e2 is not None:
extremes[1] = min(e2, extremes[1])
grid_info = dict()
lon_min, lon_max, lat_min, lat_max = extremes
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
grid_info["extremes"] = extremes
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
lon_factor,
lon_levs)
grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
lat_factor,
lat_levs)
grid_finder = self.grid_helper.grid_finder
#e1, e2 = self._extremes # ranges of other coordinates
if self.nth_coord == 0:
xx0 = np.linspace(self.value, self.value, self._line_num_points)
yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points)
xx, yy = grid_finder.transform_xy(xx0, yy0)
elif self.nth_coord == 1:
xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points)
yy0 = np.linspace(self.value, self.value, self._line_num_points)
xx, yy = grid_finder.transform_xy(xx0, yy0)
grid_info["line_xy"] = xx, yy
self.grid_info = grid_info
[docs] def get_axislabel_pos_angle(self, axes):
extremes = self.grid_info["extremes"]
if self.nth_coord == 0:
xx0 = self.value
yy0 = (extremes[2]+extremes[3])/2.
dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000.
elif self.nth_coord == 1:
xx0 = (extremes[0]+extremes[1])/2.
yy0 = self.value
dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0.
grid_finder = self.grid_helper.grid_finder
xx1, yy1 = grid_finder.transform_xy([xx0], [yy0])
trans_passingthrough_point = axes.transData + axes.transAxes.inverted()
p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]])
if 0 <= p[0] <= 1 and 0 <= p[1] <= 1:
xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]])
xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy])
xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]])
return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180.
else:
return None, None
[docs] def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
grid_finder = self.grid_helper.grid_finder
lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
lat_levs = np.asarray(lat_levs)
if lat_factor is not None:
yy0 = lat_levs / lat_factor
dy = 0.01 / lat_factor
else:
yy0 = lat_levs
dy = 0.01
lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]
lon_levs = np.asarray(lon_levs)
if lon_factor is not None:
xx0 = lon_levs / lon_factor
dx = 0.01 / lon_factor
else:
xx0 = lon_levs
dx = 0.01
if None in self._extremes:
e0, e1 = self._extremes
else:
e0, e1 = sorted(self._extremes)
if e0 is None:
e0 = -np.inf
if e1 is None:
e1 = np.inf
if self.nth_coord == 0:
mask = (e0 <= yy0) & (yy0 <= e1)
#xx0, yy0 = xx0[mask], yy0[mask]
yy0 = yy0[mask]
elif self.nth_coord == 1:
mask = (e0 <= xx0) & (xx0 <= e1)
#xx0, yy0 = xx0[mask], yy0[mask]
xx0 = xx0[mask]
def transform_xy(x, y):
x1, y1 = grid_finder.transform_xy(x, y)
x2y2 = axes.transData.transform(np.array([x1, y1]).transpose())
x2, y2 = x2y2.transpose()
return x2, y2
# find angles
if self.nth_coord == 0:
xx0 = np.empty_like(yy0)
xx0.fill(self.value)
xx1, yy1 = transform_xy(xx0, yy0)
xx00 = xx0.copy()
xx00[xx0+dx>e1] -= dx
xx1a, yy1a = transform_xy(xx00, yy0)
xx1b, yy1b = transform_xy(xx00+dx, yy0)
xx2a, yy2a = transform_xy(xx0, yy0)
xx2b, yy2b = transform_xy(xx0, yy0+dy)
labels = self.grid_info["lat_labels"]
labels = [l for l, m in zip(labels, mask) if m]
elif self.nth_coord == 1:
yy0 = np.empty_like(xx0)
yy0.fill(self.value)
xx1, yy1 = transform_xy(xx0, yy0)
xx1a, yy1a = transform_xy(xx0, yy0)
xx1b, yy1b = transform_xy(xx0, yy0+dy)
xx00 = xx0.copy()
xx00[xx0+dx>e1] -= dx
xx2a, yy2a = transform_xy(xx00, yy0)
xx2b, yy2b = transform_xy(xx00+dx, yy0)
labels = self.grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
def f1():
dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal
dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent
mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined
dd[mm] = dd2[mm] + np.pi / 2
#dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal
#dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent
#mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined
#dd[mm] = dd2[mm] + np.pi / 2
#dd += np.pi
#dd = np.arctan2(xx2-xx1, angle_tangent-yy1)
trans_tick = self.get_tick_transform(axes)
tr2ax = trans_tick + axes.transAxes.inverted()
for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
c2 = tr2ax.transform_point((x, y))
delta=0.00001
if 0-delta <= c2[0] <= 1+delta and 0-delta <= c2[1] <= 1+delta:
d1, d2 = np.rad2deg([d, d2])
yield [x, y], d1, d2, lab
return f1(), iter([])
[docs] def get_line(self, axes):
self.update_lim(axes)
x, y = self.grid_info["line_xy"]
if self._get_line_path is None:
return Path(np.column_stack([x, y]))
else:
return self._get_line_path(axes, x, y)
[docs]class GridHelperCurveLinear(GridHelperBase):
def __init__(self, aux_trans,
extreme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
"""
aux_trans : a transform from the source (curved) coordinate to
target (rectilinear) coordinate. An instance of MPL's Transform
(inverse transform should be defined) or a tuple of two callable
objects which defines the transform and its inverse. The callables
need take two arguments of array of source coordinates and
should return two target coordinates.
e.g., ``x2, y2 = trans(x1, y1)``
"""
super().__init__()
self.grid_info = None
self._old_values = None
#self._grid_params = dict()
self._aux_trans = aux_trans
self.grid_finder = GridFinder(aux_trans,
extreme_finder,
grid_locator1,
grid_locator2,
tick_formatter1,
tick_formatter2)
[docs] def update_grid_finder(self, aux_trans=None, **kw):
if aux_trans is not None:
self.grid_finder.update_transform(aux_trans)
self.grid_finder.update(**kw)
self.invalidate()
def _update(self, x1, x2, y1, y2):
"bbox in 0-based image coordinates"
# update wcsgrid
if self.valid() and self._old_values == (x1, x2, y1, y2):
return
self._update_grid(x1, y1, x2, y2)
self._old_values = (x1, x2, y1, y2)
self._force_update = False
[docs] def new_fixed_axis(self, loc,
nth_coord=None,
axis_direction=None,
offset=None,
axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
_helper = FixedAxisArtistHelper(self, loc,
#nth_coord,
nth_coord_ticks=nth_coord,
)
axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
return axisline
[docs] def new_floating_axis(self, nth_coord,
value,
axes=None,
axis_direction="bottom"
):
if axes is None:
axes = self.axes
_helper = FloatingAxisArtistHelper(
self, nth_coord, value, axis_direction)
axisline = AxisArtist(axes, _helper)
#_helper = FloatingAxisArtistHelper(self, nth_coord,
# value,
# label_direction=label_direction,
# )
#axisline = AxisArtistFloating(axes, _helper,
# axis_direction=axis_direction)
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
#axisline.major_ticklabels.set_visible(True)
#axisline.minor_ticklabels.set_visible(False)
#axisline.major_ticklabels.set_rotate_along_line(True)
#axisline.set_rotate_label_along_line(True)
return axisline
def _update_grid(self, x1, y1, x2, y2):
self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2)
[docs] def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
for gl in self.grid_info["lon"]["lines"]:
grid_lines.extend(gl)
if axis in ["both", "y"]:
for gl in self.grid_info["lat"]["lines"]:
grid_lines.extend(gl)
return grid_lines
[docs] def get_tick_iterator(self, nth_coord, axis_side, minor=False):
#axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side]
angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side]
#angle = [0, 90, 180, 270][axisnr]
lon_or_lat = ["lon", "lat"][nth_coord]
if not minor: # major ticks
def f():
for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side],
self.grid_info[lon_or_lat]["tick_labels"][axis_side]):
angle_normal = a
yield xy, angle_normal, angle_tangent, l
else:
def f():
for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side],
self.grid_info[lon_or_lat]["tick_labels"][axis_side]):
angle_normal = a
yield xy, angle_normal, angle_tangent, ""
#for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]:
# yield xy, a, ""
return f()