.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gallery_images_contours_and_fields_custom_cmap.py: ========================================= Creating a colormap from a list of colors ========================================= Creating a :doc:`colormap ` from a list of colors can be done with the :meth:`~.colors.LinearSegmentedColormap.from_list` method of `LinearSegmentedColormap`. You must pass a list of RGB tuples that define the mixture of colors from 0 to 1. Creating custom colormaps ------------------------- It is also possible to create a custom mapping for a colormap. This is accomplished by creating dictionary that specifies how the RGB channels change from one end of the cmap to the other. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0))} If, as in this example, there are no discontinuities in the r, g, and b components, then it is quite simple: the second and third element of each tuple, above, is the same--call it "y". The first element ("x") defines interpolation intervals over the full range of 0 to 1, and it must span that whole range. In other words, the values of x divide the 0-to-1 range into a set of segments, and y gives the end-point color values for each segment. Now consider the green. cdict['green'] is saying that for 0 <= x <= 0.25, y is zero; no green. 0.25 < x <= 0.75, y varies linearly from 0 to 1. x > 0.75, y remains at 1, full green. If there are discontinuities, then it is a little more complicated. Label the 3 elements in each row in the cdict entry for a given color as (x, y0, y1). Then for values of x between x[i] and x[i+1] the color value is interpolated between y1[i] and y0[i+1]. Going back to the cookbook example, look at cdict['red']; because y0 != y1, it is saying that for x from 0 to 0.5, red increases from 0 to 1, but then it jumps down, so that for x from 0.5 to 1, red increases from 0.7 to 1. Green ramps from 0 to 1 as x goes from 0 to 0.5, then jumps back to 0, and ramps back to 1 as x goes from 0.5 to 1.:: row i: x y0 y1 / / row i+1: x y0 y1 Above is an attempt to show that for x in the range x[i] to x[i+1], the interpolation is between y1[i] and y0[i+1]. So, y0[0] and y1[-1] are never used. .. code-block:: python import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap # Make some illustrative fake data: x = np.arange(0, np.pi, 0.1) y = np.arange(0, 2 * np.pi, 0.1) X, Y = np.meshgrid(x, y) Z = np.cos(X) * np.sin(Y) * 10 --- Colormaps from a list --- .. code-block:: python colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # R -> G -> B n_bins = [3, 6, 10, 100] # Discretizes the interpolation into bins cmap_name = 'my_list' fig, axs = plt.subplots(2, 2, figsize=(6, 9)) fig.subplots_adjust(left=0.02, bottom=0.06, right=0.95, top=0.94, wspace=0.05) for n_bin, ax in zip(n_bins, axs.ravel()): # Create the colormap cm = LinearSegmentedColormap.from_list( cmap_name, colors, N=n_bin) # Fewer bins will result in "coarser" colomap interpolation im = ax.imshow(Z, interpolation='nearest', origin='lower', cmap=cm) ax.set_title("N bins: %s" % n_bin) fig.colorbar(im, ax=ax) .. image:: /gallery/images_contours_and_fields/images/sphx_glr_custom_cmap_001.png :class: sphx-glr-single-img --- Custom colormaps --- .. code-block:: python cdict1 = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } cdict2 = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 0.1, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.1), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)) } cdict3 = {'red': ((0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.5, 0.8, 1.0), (0.75, 1.0, 1.0), (1.0, 0.4, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.5, 0.9, 0.9), (0.75, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.4), (0.25, 1.0, 1.0), (0.5, 1.0, 0.8), (0.75, 0.0, 0.0), (1.0, 0.0, 0.0)) } # Make a modified version of cdict3 with some transparency # in the middle of the range. cdict4 = {**cdict3, 'alpha': ((0.0, 1.0, 1.0), # (0.25,1.0, 1.0), (0.5, 0.3, 0.3), # (0.75,1.0, 1.0), (1.0, 1.0, 1.0)), } Now we will use this example to illustrate 3 ways of handling custom colormaps. First, the most direct and explicit: .. code-block:: python blue_red1 = LinearSegmentedColormap('BlueRed1', cdict1) Second, create the map explicitly and register it. Like the first method, this method works with any kind of Colormap, not just a LinearSegmentedColormap: .. code-block:: python blue_red2 = LinearSegmentedColormap('BlueRed2', cdict2) plt.register_cmap(cmap=blue_red2) Third, for LinearSegmentedColormap only, leave everything to register_cmap: .. code-block:: python plt.register_cmap(name='BlueRed3', data=cdict3) # optional lut kwarg plt.register_cmap(name='BlueRedAlpha', data=cdict4) Make the figure: .. code-block:: python fig, axs = plt.subplots(2, 2, figsize=(6, 9)) fig.subplots_adjust(left=0.02, bottom=0.06, right=0.95, top=0.94, wspace=0.05) # Make 4 subplots: im1 = axs[0, 0].imshow(Z, interpolation='nearest', cmap=blue_red1) fig.colorbar(im1, ax=axs[0, 0]) cmap = plt.get_cmap('BlueRed2') im2 = axs[1, 0].imshow(Z, interpolation='nearest', cmap=cmap) fig.colorbar(im2, ax=axs[1, 0]) # Now we will set the third cmap as the default. One would # not normally do this in the middle of a script like this; # it is done here just to illustrate the method. plt.rcParams['image.cmap'] = 'BlueRed3' im3 = axs[0, 1].imshow(Z, interpolation='nearest') fig.colorbar(im3, ax=axs[0, 1]) axs[0, 1].set_title("Alpha = 1") # Or as yet another variation, we can replace the rcParams # specification *before* the imshow with the following *after* # imshow. # This sets the new default *and* sets the colormap of the last # image-like item plotted via pyplot, if any. # # Draw a line with low zorder so it will be behind the image. axs[1, 1].plot([0, 10 * np.pi], [0, 20 * np.pi], color='c', lw=20, zorder=-1) im4 = axs[1, 1].imshow(Z, interpolation='nearest') fig.colorbar(im4, ax=axs[1, 1]) # Here it is: changing the colormap for the current image and its # colorbar after they have been plotted. im4.set_cmap('BlueRedAlpha') axs[1, 1].set_title("Varying alpha") # fig.suptitle('Custom Blue-Red colormaps', fontsize=16) fig.subplots_adjust(top=0.9) plt.show() .. image:: /gallery/images_contours_and_fields/images/sphx_glr_custom_cmap_002.png :class: sphx-glr-single-img ------------ References """""""""" The use of the following functions, methods, classes and modules is shown in this example: .. code-block:: python import matplotlib matplotlib.axes.Axes.imshow matplotlib.pyplot.imshow matplotlib.figure.Figure.colorbar matplotlib.pyplot.colorbar matplotlib.colors matplotlib.colors.LinearSegmentedColormap matplotlib.colors.LinearSegmentedColormap.from_list matplotlib.cm matplotlib.cm.ScalarMappable.set_cmap matplotlib.pyplot.register_cmap matplotlib.cm.register_cmap .. _sphx_glr_download_gallery_images_contours_and_fields_custom_cmap.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: custom_cmap.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: custom_cmap.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature Keywords: matplotlib code example, codex, python plot, pyplot `Gallery generated by Sphinx-Gallery `_