"""
This module contains a class representing a Type 1 font.
This version reads pfa and pfb files and splits them for embedding in
pdf files. It also supports SlantFont and ExtendFont transformations,
similarly to pdfTeX and friends. There is no support yet for
subsetting.
Usage::
>>> font = Type1Font(filename)
>>> clear_part, encrypted_part, finale = font.parts
>>> slanted_font = font.transform({'slant': 0.167})
>>> extended_font = font.transform({'extend': 1.2})
Sources:
* Adobe Technical Note #5040, Supporting Downloadable PostScript
Language Fonts.
* Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing,
v1.1, 1993. ISBN 0-201-57044-0.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import binascii
import io
import itertools
import re
import struct
import numpy as np
if six.PY3:
[docs]class Type1Font(object):
"""
A class representing a Type-1 font, for use by backends.
Attributes
----------
parts : tuple
A 3-tuple of the cleartext part, the encrypted part, and the finale of
zeros.
prop : Dict[str, Any]
A dictionary of font properties.
"""
__slots__ = ('parts', 'prop')
def __init__(self, input):
"""
Initialize a Type-1 font. *input* can be either the file name of
a pfb file or a 3-tuple of already-decoded Type-1 font parts.
"""
if isinstance(input, tuple) and len(input) == 3:
self.parts = input
else:
with open(input, 'rb') as file:
data = self._read(file)
self.parts = self._split(data)
self._parse()
def _read(self, file):
"""
Read the font from a file, decoding into usable parts.
"""
rawdata = file.read()
if not rawdata.startswith(b'\x80'):
return rawdata
data = b''
while len(rawdata) > 0:
if not rawdata.startswith(b'\x80'):
raise RuntimeError('Broken pfb file (expected byte 128, '
'got %d)' % ord(rawdata[0]))
type = ord(rawdata[1])
if type in (1, 2):
length, = struct.unpack(str('<i'), rawdata[2:6])
segment = rawdata[6:6 + length]
rawdata = rawdata[6 + length:]
if type == 1: # ASCII text: include verbatim
data += segment
elif type == 2: # binary data: encode in hexadecimal
data += binascii.hexlify(segment)
elif type == 3: # end of file
break
else:
raise RuntimeError('Unknown segment type %d in pfb file' %
type)
return data
def _split(self, data):
"""
Split the Type 1 font into its three main parts.
The three parts are: (1) the cleartext part, which ends in a
eexec operator; (2) the encrypted part; (3) the fixed part,
which contains 512 ASCII zeros possibly divided on various
lines, a cleartomark operator, and possibly something else.
"""
# Cleartext part: just find the eexec and skip whitespace
idx = data.index(b'eexec')
idx += len(b'eexec')
while data[idx] in b' \t\r\n':
idx += 1
len1 = idx
# Encrypted part: find the cleartomark operator and count
# zeros backward
idx = data.rindex(b'cleartomark') - 1
zeros = 512
while zeros and data[idx] in b'0' or data[idx] in b'\r\n':
if data[idx] in b'0':
zeros -= 1
idx -= 1
if zeros:
raise RuntimeError('Insufficiently many zeros in Type 1 font')
# Convert encrypted part to binary (if we read a pfb file, we
# may end up converting binary to hexadecimal to binary again;
# but if we read a pfa file, this part is already in hex, and
# I am not quite sure if even the pfb format guarantees that
# it will be in binary).
binary = binascii.unhexlify(data[len1:idx+1])
return data[:len1], binary, data[idx+1:]
_whitespace_re = re.compile(br'[\0\t\r\014\n ]+')
_token_re = re.compile(br'/{0,2}[^]\0\t\r\v\n ()<>{}/%[]+')
_comment_re = re.compile(br'%[^\r\n\v]*')
_instring_re = re.compile(br'[()\\]')
# token types, compared via object identity (poor man's enum)
_whitespace = object()
_name = object()
_string = object()
_delimiter = object()
_number = object()
@classmethod
def _tokens(cls, text):
"""
A PostScript tokenizer. Yield (token, value) pairs such as
(cls._whitespace, ' ') or (cls._name, '/Foobar').
"""
pos = 0
while pos < len(text):
match = (cls._comment_re.match(text[pos:]) or
cls._whitespace_re.match(text[pos:]))
if match:
yield (cls._whitespace, match.group())
pos += match.end()
elif text[pos] == b'(':
start = pos
pos += 1
depth = 1
while depth:
match = cls._instring_re.search(text[pos:])
if match is None:
return
pos += match.end()
if match.group() == b'(':
depth += 1
elif match.group() == b')':
depth -= 1
else: # a backslash - skip the next character
pos += 1
yield (cls._string, text[start:pos])
elif text[pos:pos + 2] in (b'<<', b'>>'):
yield (cls._delimiter, text[pos:pos + 2])
pos += 2
elif text[pos] == b'<':
start = pos
pos += text[pos:].index(b'>')
yield (cls._string, text[start:pos])
else:
match = cls._token_re.match(text[pos:])
if match:
try:
float(match.group())
yield (cls._number, match.group())
except ValueError:
yield (cls._name, match.group())
pos += match.end()
else:
yield (cls._delimiter, text[pos:pos + 1])
pos += 1
def _parse(self):
"""
Find the values of various font properties. This limited kind
of parsing is described in Chapter 10 "Adobe Type Manager
Compatibility" of the Type-1 spec.
"""
# Start with reasonable defaults
prop = {'weight': 'Regular', 'ItalicAngle': 0.0, 'isFixedPitch': False,
'UnderlinePosition': -100, 'UnderlineThickness': 50}
filtered = ((token, value)
for token, value in self._tokens(self.parts[0])
if token is not self._whitespace)
# The spec calls this an ASCII format; in Python 2.x we could
# just treat the strings and names as opaque bytes but let's
# turn them into proper Unicode, and be lenient in case of high bytes.
convert = lambda x: x.decode('ascii', 'replace')
for token, value in filtered:
if token is self._name and value.startswith(b'/'):
key = convert(value[1:])
token, value = next(filtered)
if token is self._name:
if value in (b'true', b'false'):
value = value == b'true'
else:
value = convert(value.lstrip(b'/'))
elif token is self._string:
value = convert(value.lstrip(b'(').rstrip(b')'))
elif token is self._number:
if b'.' in value:
value = float(value)
else:
value = int(value)
else: # more complicated value such as an array
value = None
if key != 'FontInfo' and value is not None:
prop[key] = value
# Fill in the various *Name properties
if 'FontName' not in prop:
prop['FontName'] = (prop.get('FullName') or
prop.get('FamilyName') or
'Unknown')
if 'FullName' not in prop:
prop['FullName'] = prop['FontName']
if 'FamilyName' not in prop:
extras = ('(?i)([ -](regular|plain|italic|oblique|(semi)?bold|'
'(ultra)?light|extra|condensed))+$')
prop['FamilyName'] = re.sub(extras, '', prop['FullName'])
self.prop = prop
@classmethod
def _transformer(cls, tokens, slant, extend):
def fontname(name):
result = name
if slant:
result += b'_Slant_' + str(int(1000 * slant)).encode('ascii')
if extend != 1.0:
result += b'_Extend_' + str(int(1000 * extend)).encode('ascii')
return result
def italicangle(angle):
return (str(float(angle) - np.arctan(slant) / np.pi * 180)
.encode('ascii'))
def fontmatrix(array):
array = array.lstrip(b'[').rstrip(b']').split()
array = [float(x) for x in array]
oldmatrix = np.eye(3, 3)
oldmatrix[0:3, 0] = array[::2]
oldmatrix[0:3, 1] = array[1::2]
modifier = np.array([[extend, 0, 0],
[slant, 1, 0],
[0, 0, 1]])
newmatrix = np.dot(modifier, oldmatrix)
array[::2] = newmatrix[0:3, 0]
array[1::2] = newmatrix[0:3, 1]
as_string = u'[' + u' '.join(str(x) for x in array) + u']'
return as_string.encode('latin-1')
def replace(fun):
def replacer(tokens):
token, value = next(tokens) # name, e.g., /FontMatrix
yield bytes(value)
token, value = next(tokens) # possible whitespace
while token is cls._whitespace:
yield bytes(value)
token, value = next(tokens)
if value != b'[': # name/number/etc.
yield bytes(fun(value))
else: # array, e.g., [1 2 3]
result = b''
while value != b']':
result += value
token, value = next(tokens)
result += value
yield fun(result)
return replacer
def suppress(tokens):
for x in itertools.takewhile(lambda x: x[1] != b'def', tokens):
pass
yield b''
table = {b'/FontName': replace(fontname),
b'/ItalicAngle': replace(italicangle),
b'/FontMatrix': replace(fontmatrix),
b'/UniqueID': suppress}
for token, value in tokens:
if token is cls._name and value in table:
for value in table[value](itertools.chain([(token, value)],
tokens)):
yield value
else:
yield value