matplotlib.colors.
LinearSegmentedColormap
(name, segmentdata, N=256, gamma=1.0)[source]¶Colormap objects based on lookup tables using linear segments.
The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments.
Create color map from linear mapping segments
segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional.
Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:
cdict = {'red': [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'blue': [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}
Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output value of a given color will be linearly interpolated between y1[i] and y0[i+1]:
row i: x y0 y1
/
/
row i+1: x y0 y1
Hence y0 in the first row and y1 in the last row are never used.
See also
LinearSegmentedColormap.from_list()
Static method; factory function for generating a
smoothly-varying LinearSegmentedColormap.
makeMappingArray()
For information about making a mapping array.
from_list
(name, colors, N=256, gamma=1.0)[source]¶Make a linear segmented colormap with name from a sequence of colors which evenly transitions from colors[0] at val=0 to colors[-1] at val=1. N is the number of rgb quantization levels. Alternatively, a list of (value, color) tuples can be given to divide the range unevenly.
matplotlib.colors.LinearSegmentedColormap
¶