from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import xrange, zip, zip_longest
import functools
import itertools
import logging
import math
import warnings
import numpy as np
from numpy import ma
import matplotlib
from matplotlib import _preprocess_data
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.category as _ # <-registers a category unit converter
import matplotlib.dates as _ # <-registers a date unit converter
import matplotlib.docstring as docstring
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.markers as mmarkers
import matplotlib.mlab as mlab
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.quiver as mquiver
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.tri as mtri
from matplotlib.cbook import (
_backports, mplDeprecation, warn_deprecated,
STEP_LOOKUP_MAP, iterable, safe_first_element)
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.axes._base import _AxesBase, _process_plot_format
_log = logging.getLogger(__name__)
rcParams = matplotlib.rcParams
_alias_map = {'color': ['c'],
'linewidth': ['lw'],
'linestyle': ['ls'],
'facecolor': ['fc'],
'edgecolor': ['ec'],
'markerfacecolor': ['mfc'],
'markeredgecolor': ['mec'],
'markeredgewidth': ['mew'],
'markersize': ['ms'],
}
def _plot_args_replacer(args, data):
if len(args) == 1:
return ["y"]
elif len(args) == 2:
# this can be two cases: x,y or y,c
if not args[1] in data:
# this is not in data, so just assume that it is something which
# will not get replaced (color spec or array like).
return ["y", "c"]
# it's data, but could be a color code like 'ro' or 'b--'
# -> warn the user in that case...
try:
_process_plot_format(args[1])
except ValueError:
pass
else:
warnings.warn(
"Second argument {!r} is ambiguous: could be a color spec but "
"is in data; using as data. Either rename the entry in data "
"or use three arguments to plot.".format(args[1]),
RuntimeWarning, stacklevel=3)
return ["x", "y"]
elif len(args) == 3:
return ["x", "y", "c"]
else:
raise ValueError("Using arbitrary long args with data is not "
"supported due to ambiguity of arguments.\nUse "
"multiple plotting calls instead.")
# The axes module contains all the wrappers to plotting functions.
# All the other methods should go in the _AxesBase class.
[docs]class Axes(_AxesBase):
"""
The :class:`Axes` contains most of the figure elements:
:class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
:class:`~matplotlib.patches.Polygon`, etc., and sets the
coordinate system.
The :class:`Axes` instance supports callbacks through a callbacks
attribute which is a :class:`~matplotlib.cbook.CallbackRegistry`
instance. The events you can connect to are 'xlim_changed' and
'ylim_changed' and the callback will be called with func(*ax*)
where *ax* is the :class:`Axes` instance.
"""
### Labelling, legend and texts
aname = 'Axes'
[docs] def get_title(self, loc="center"):
"""
Get an axes title.
Get one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
loc : {'center', 'left', 'right'}, str, optional
Which title to get, defaults to 'center'.
Returns
-------
title : str
The title text string.
"""
try:
title = {'left': self._left_title,
'center': self.title,
'right': self._right_title}[loc.lower()]
except KeyError:
raise ValueError("'%s' is not a valid location" % loc)
return title.get_text()
[docs] def set_title(self, label, fontdict=None, loc="center", pad=None,
**kwargs):
"""
Set a title for the axes.
Set one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
label : str
Text to use for the title
fontdict : dict
A dictionary controlling the appearance of the title text,
the default `fontdict` is::
{'fontsize': rcParams['axes.titlesize'],
'fontweight' : rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}
loc : {'center', 'left', 'right'}, str, optional
Which title to set, defaults to 'center'
pad : float
The offset of the title from the top of the axes, in points.
Default is ``None`` to use rcParams['axes.titlepad'].
Returns
-------
text : :class:`~matplotlib.text.Text`
The matplotlib text instance representing the title
Other Parameters
----------------
**kwargs : `~matplotlib.text.Text` properties
Other keyword arguments are text properties, see
:class:`~matplotlib.text.Text` for a list of valid text
properties.
"""
try:
title = {'left': self._left_title,
'center': self.title,
'right': self._right_title}[loc.lower()]
except KeyError:
raise ValueError("'%s' is not a valid location" % loc)
default = {
'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc.lower()}
if pad is None:
pad = rcParams['axes.titlepad']
self._set_title_offset_trans(float(pad))
title.set_text(label)
title.update(default)
if fontdict is not None:
title.update(fontdict)
title.update(kwargs)
return title
[docs] def get_xlabel(self):
"""
Get the xlabel text string.
"""
label = self.xaxis.get_label()
return label.get_text()
[docs] def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs):
"""
Set the label for the x-axis.
Parameters
----------
xlabel : str
The label text.
labelpad : scalar, optional, default: None
Spacing in points between the label and the x-axis.
Other Parameters
----------------
**kwargs : `.Text` properties
`.Text` properties control the appearance of the label.
See also
--------
text : for information on how override and the optional args work
"""
if labelpad is not None:
self.xaxis.labelpad = labelpad
return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)
[docs] def get_ylabel(self):
"""
Get the ylabel text string.
"""
label = self.yaxis.get_label()
return label.get_text()
[docs] def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs):
"""
Set the label for the y-axis.
Parameters
----------
ylabel : str
The label text.
labelpad : scalar, optional, default: None
Spacing in points between the label and the y-axis.
Other Parameters
----------------
**kwargs : `.Text` properties
`.Text` properties control the appearance of the label.
See also
--------
text : for information on how override and the optional args work
"""
if labelpad is not None:
self.yaxis.labelpad = labelpad
return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)
[docs] def get_legend_handles_labels(self, legend_handler_map=None):
"""
Return handles and labels for legend
``ax.legend()`` is equivalent to ::
h, l = ax.get_legend_handles_labels()
ax.legend(h, l)
"""
# pass through to legend.
handles, labels = mlegend._get_legend_handles_labels([self],
legend_handler_map)
return handles, labels
[docs] @docstring.dedent_interpd
def legend(self, *args, **kwargs):
"""
Places a legend on the axes.
Call signatures::
legend()
legend(labels)
legend(handles, labels)
The call signatures correspond to three different ways how to use
this method.
**1. Automatic detection of elements to be shown in the legend**
The elements to be added to the legend are automatically determined,
when you do not pass in any extra arguments.
In this case, the labels are taken from the artist. You can specify
them either at artist creation or by calling the
:meth:`~.Artist.set_label` method on the artist::
line, = ax.plot([1, 2, 3], label='Inline label')
ax.legend()
or::
line.set_label('Label via method')
line, = ax.plot([1, 2, 3])
ax.legend()
Specific lines can be excluded from the automatic legend element
selection by defining a label starting with an underscore.
This is default for all artists, so calling `Axes.legend` without
any arguments and without setting the labels manually will result in
no legend being drawn.
**2. Labeling existing plot elements**
To make a legend for lines which already exist on the axes
(via plot for instance), simply call this function with an iterable
of strings, one for each legend item. For example::
ax.plot([1, 2, 3])
ax.legend(['A simple line'])
Note: This way of using is discouraged, because the relation between
plot elements and labels is only implicit by their order and can
easily be mixed up.
**3. Explicitly defining the elements in the legend**
For full control of which artists have a legend entry, it is possible
to pass an iterable of legend artists followed by an iterable of
legend labels respectively::
legend((line1, line2, line3), ('label1', 'label2', 'label3'))
Parameters
----------
handles : sequence of `.Artist`, optional
A list of Artists (lines, patches) to be added to the legend.
Use this together with *labels*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.
The length of handles and labels should be the same in this
case. If they are not, they are truncated to the smaller length.
labels : sequence of strings, optional
A list of labels to show next to the artists.
Use this together with *handles*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.
Other Parameters
----------------
loc : int or string or pair of floats, default: 'upper right'
The location of the legend. Possible codes are:
=============== =============
Location String Location Code
=============== =============
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10
=============== =============
Alternatively can be a 2-tuple giving ``x, y`` of the lower-left
corner of the legend in axes coordinates (in which case
``bbox_to_anchor`` will be ignored).
bbox_to_anchor : `.BboxBase` or pair of floats
Specify any arbitrary location for the legend in `bbox_transform`
coordinates (default Axes coordinates).
For example, to put the legend's upper right hand corner in the
center of the axes the following keywords can be used::
loc='upper right', bbox_to_anchor=(0.5, 0.5)
ncol : integer
The number of columns that the legend has. Default is 1.
prop : None or :class:`matplotlib.font_manager.FontProperties` or dict
The font properties of the legend. If None (default), the current
:data:`matplotlib.rcParams` will be used.
fontsize : int or float or {'xx-small', 'x-small', 'small', 'medium', \
'large', 'x-large', 'xx-large'}
Controls the font size of the legend. If the value is numeric the
size will be the absolute font size in points. String values are
relative to the current default font size. This argument is only
used if `prop` is not specified.
numpoints : None or int
The number of marker points in the legend when creating a legend
entry for a `.Line2D` (line).
Default is ``None``, which will take the value from
:rc:`legend.numpoints`.
scatterpoints : None or int
The number of marker points in the legend when creating
a legend entry for a `.PathCollection` (scatter plot).
Default is ``None``, which will take the value from
:rc:`legend.scatterpoints`.
scatteryoffsets : iterable of floats
The vertical offset (relative to the font size) for the markers
created for a scatter plot legend entry. 0.0 is at the base the
legend text, and 1.0 is at the top. To draw all markers at the
same height, set to ``[0.5]``. Default is ``[0.375, 0.5, 0.3125]``.
markerscale : None or int or float
The relative size of legend markers compared with the originally
drawn ones.
Default is ``None``, which will take the value from
:rc:`legend.markerscale`.
markerfirst : bool
If *True*, legend marker is placed to the left of the legend label.
If *False*, legend marker is placed to the right of the legend
label.
Default is *True*.
frameon : None or bool
Control whether the legend should be drawn on a patch
(frame).
Default is ``None``, which will take the value from
:rc:`legend.frameon`.
fancybox : None or bool
Control whether round edges should be enabled around the
:class:`~matplotlib.patches.FancyBboxPatch` which makes up the
legend's background.
Default is ``None``, which will take the value from
:rc:`legend.fancybox`.
shadow : None or bool
Control whether to draw a shadow behind the legend.
Default is ``None``, which will take the value from
:rc:`legend.shadow`.
framealpha : None or float
Control the alpha transparency of the legend's background.
Default is ``None``, which will take the value from
:rc:`legend.framealpha`. If shadow is activated and
*framealpha* is ``None``, the default value is ignored.
facecolor : None or "inherit" or a color spec
Control the legend's background color.
Default is ``None``, which will take the value from
:rc:`legend.facecolor`. If ``"inherit"``, it will take
:rc:`axes.facecolor`.
edgecolor : None or "inherit" or a color spec
Control the legend's background patch edge color.
Default is ``None``, which will take the value from
:rc:`legend.edgecolor` If ``"inherit"``, it will take
:rc:`axes.edgecolor`.
mode : {"expand", None}
If `mode` is set to ``"expand"`` the legend will be horizontally
expanded to fill the axes area (or `bbox_to_anchor` if defines
the legend's size).
bbox_transform : None or :class:`matplotlib.transforms.Transform`
The transform for the bounding box (`bbox_to_anchor`). For a value
of ``None`` (default) the Axes'
:data:`~matplotlib.axes.Axes.transAxes` transform will be used.
title : str or None
The legend's title. Default is no title (``None``).
borderpad : float or None
The fractional whitespace inside the legend border.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.borderpad`.
labelspacing : float or None
The vertical space between the legend entries.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.labelspacing`.
handlelength : float or None
The length of the legend handles.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.handlelength`.
handletextpad : float or None
The pad between the legend handle and text.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.handletextpad`.
borderaxespad : float or None
The pad between the axes and legend border.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.borderaxespad`.
columnspacing : float or None
The spacing between columns.
Measured in font-size units.
Default is ``None``, which will take the value from
:rc:`legend.columnspacing`.
handler_map : dict or None
The custom dictionary mapping instances or types to a legend
handler. This `handler_map` updates the default handler map
found at :func:`matplotlib.legend.Legend.get_legend_handler_map`.
Returns
-------
:class:`matplotlib.legend.Legend` instance
Notes
-----
Not all kinds of artist are supported by the legend command. See
:doc:`/tutorials/intermediate/legend_guide` for details.
Examples
--------
.. plot:: gallery/api/legend.py
"""
handles, labels, extra_args, kwargs = mlegend._parse_legend_args(
[self],
*args,
**kwargs)
if len(extra_args):
raise TypeError('legend only accepts two non-keyword arguments')
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
self.legend_._remove_method = lambda h: setattr(self, 'legend_', None)
return self.legend_
[docs] def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
"""
Add text to the axes.
Add the text *s* to the axes at location *x*, *y* in data coordinates.
Parameters
----------
x, y : scalars
The position to place the text. By default, this is in data
coordinates. The coordinate system can be changed using the
*transform* parameter.
s : str
The text.
fontdict : dictionary, optional, default: None
A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by your rc parameters.
withdash : boolean, optional, default: False
Creates a `~matplotlib.text.TextWithDash` instance instead of a
`~matplotlib.text.Text` instance.
Returns
-------
text : `.Text`
The created `.Text` instance.
Other Parameters
----------------
**kwargs : `~matplotlib.text.Text` properties.
Other miscellaneous text parameters.
Examples
--------
Individual keyword arguments can be used to override any given
parameter::
>>> text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., to
set a background color) by using the keyword `bbox`. `bbox` is
a dictionary of `~matplotlib.patches.Rectangle`
properties. For example::
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
"""
default = {
'verticalalignment': 'baseline',
'horizontalalignment': 'left',
'transform': self.transData,
'clip_on': False}
# At some point if we feel confident that TextWithDash
# is robust as a drop-in replacement for Text and that
# the performance impact of the heavier-weight class
# isn't too significant, it may make sense to eliminate
# the withdash kwarg and simply delegate whether there's
# a dash to TextWithDash and dashlength.
if withdash:
t = mtext.TextWithDash(
x=x, y=y, text=s)
else:
t = mtext.Text(
x=x, y=y, text=s)
t.update(default)
if fontdict is not None:
t.update(fontdict)
t.update(kwargs)
t.set_clip_path(self.patch)
self._add_text(t)
return t
[docs] @docstring.dedent_interpd
def annotate(self, *args, **kwargs):
a = mtext.Annotation(*args, **kwargs)
a.set_transform(mtransforms.IdentityTransform())
if 'clip_on' in kwargs:
a.set_clip_path(self.patch)
self._add_text(a)
return a
annotate.__doc__ = mtext.Annotation.__init__.__doc__
#### Lines and spans
[docs] @docstring.dedent_interpd
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal line across the axis.
Parameters
----------
y : scalar, optional, default: 0
y position in data coordinates of the horizontal line.
xmin : scalar, optional, default: 0
Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.
xmax : scalar, optional, default: 1
Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.
Returns
-------
line : :class:`~matplotlib.lines.Line2D`
Other Parameters
----------------
**kwargs :
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
with the exception of 'transform':
%(Line2D)s
See also
--------
hlines : Add horizontal lines in data coordinates.
axhspan : Add a horizontal span (rectangle) across the axis.
Examples
--------
* draw a thick red hline at 'y' = 0 that spans the xrange::
>>> axhline(linewidth=4, color='r')
* draw a default hline at 'y' = 1 that spans the xrange::
>>> axhline(y=1)
* draw a default hline at 'y' = .5 that spans the middle half of
the xrange::
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axhline generates its own transform.")
ymin, ymax = self.get_ybound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(ydata=y, kwargs=kwargs)
yy = self.convert_yunits(y)
scaley = (yy < ymin) or (yy > ymax)
trans = self.get_yaxis_transform(which='grid')
l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
self.add_line(l)
self.autoscale_view(scalex=False, scaley=scaley)
return l
[docs] @docstring.dedent_interpd
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
"""
Add a vertical line across the axes.
Parameters
----------
x : scalar, optional, default: 0
x position in data coordinates of the vertical line.
ymin : scalar, optional, default: 0
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.
ymax : scalar, optional, default: 1
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.
Returns
-------
line : :class:`~matplotlib.lines.Line2D`
Other Parameters
----------------
**kwargs :
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
with the exception of 'transform':
%(Line2D)s
Examples
--------
* draw a thick red vline at *x* = 0 that spans the yrange::
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange::
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the middle half of
the yrange::
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
See also
--------
vlines : Add vertical lines in data coordinates.
axvspan : Add a vertical span (rectangle) across the axis.
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axvline generates its own transform.")
xmin, xmax = self.get_xbound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(xdata=x, kwargs=kwargs)
xx = self.convert_xunits(x)
scalex = (xx < xmin) or (xx > xmax)
trans = self.get_xaxis_transform(which='grid')
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
self.add_line(l)
self.autoscale_view(scalex=scalex, scaley=False)
return l
[docs] @docstring.dedent_interpd
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal span (rectangle) across the axis.
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
With the default values of *xmin* = 0 and *xmax* = 1, this
always spans the xrange, regardless of the xlim settings, even
if you change them, e.g., with the :meth:`set_xlim` command.
That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the *y* location is in data
coordinates.
Parameters
----------
ymin : float
Lower limit of the horizontal span in data units.
ymax : float
Upper limit of the horizontal span in data units.
xmin : float, optional, default: 0
Lower limit of the vertical span in axes (relative
0-1) units.
xmax : float, optional, default: 1
Upper limit of the vertical span in axes (relative
0-1) units.
Returns
-------
Polygon : `~matplotlib.patches.Polygon`
Other Parameters
----------------
**kwargs : `~matplotlib.patches.Polygon` properties.
%(Polygon)s
See Also
--------
axvspan : Add a vertical span across the axes.
"""
trans = self.get_yaxis_transform(which='grid')
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self.autoscale_view(scalex=False)
return p
[docs] def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
"""
Add a vertical span (rectangle) across the axes.
Draw a vertical span (rectangle) from `xmin` to `xmax`. With
the default values of `ymin` = 0 and `ymax` = 1. This always
spans the yrange, regardless of the ylim settings, even if you
change them, e.g., with the :meth:`set_ylim` command. That is,
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
1.0=top but the y location is in data coordinates.
Parameters
----------
xmin : scalar
Number indicating the first X-axis coordinate of the vertical
span rectangle in data units.
xmax : scalar
Number indicating the second X-axis coordinate of the vertical
span rectangle in data units.
ymin : scalar, optional
Number indicating the first Y-axis coordinate of the vertical
span rectangle in relative Y-axis units (0-1). Default to 0.
ymax : scalar, optional
Number indicating the second Y-axis coordinate of the vertical
span rectangle in relative Y-axis units (0-1). Default to 1.
Returns
-------
rectangle : matplotlib.patches.Polygon
Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).
Other Parameters
----------------
**kwargs
Optional parameters are properties of the class
matplotlib.patches.Polygon.
See Also
--------
axhspan : Add a horizontal span across the axes.
Examples
--------
Draw a vertical, green, translucent rectangle from x = 1.25 to
x = 1.55 that spans the yrange of the axes.
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
"""
trans = self.get_xaxis_transform(which='grid')
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self.autoscale_view(scaley=False)
return p
[docs] @_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
label_namer="y")
def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
label='', **kwargs):
"""
Plot horizontal lines at each *y* from *xmin* to *xmax*.
Parameters
----------
y : scalar or sequence of scalar
y-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : array_like of colors, optional, default: 'k'
linestyles : ['solid' | 'dashed' | 'dashdot' | 'dotted'], optional
label : string, optional, default: ''
Returns
-------
lines : `~matplotlib.collections.LineCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.LineCollection` properties.
See also
--------
vlines : vertical lines
axhline: horizontal line across the axes
"""
# We do the conversion first since not all unitized data is uniform
# process the unit information
self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
y = self.convert_yunits(y)
xmin = self.convert_xunits(xmin)
xmax = self.convert_xunits(xmax)
if not iterable(y):
y = [y]
if not iterable(xmin):
xmin = [xmin]
if not iterable(xmax):
xmax = [xmax]
y, xmin, xmax = cbook.delete_masked_points(y, xmin, xmax)
y = np.ravel(y)
xmin = np.resize(xmin, y.shape)
xmax = np.resize(xmax, y.shape)
verts = [((thisxmin, thisy), (thisxmax, thisy))
for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
lines = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(lines, autolim=False)
lines.update(kwargs)
if len(y) > 0:
minx = min(xmin.min(), xmax.min())
maxx = max(xmin.max(), xmax.max())
miny = y.min()
maxy = y.max()
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return lines
[docs] @_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
label_namer="x")
def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
label='', **kwargs):
"""
Plot vertical lines.
Plot vertical lines at each *x* from *ymin* to *ymax*.
Parameters
----------
x : scalar or 1D array_like
x-indexes where to plot the lines.
ymin, ymax : scalar or 1D array_like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : array_like of colors, optional, default: 'k'
linestyles : ['solid' | 'dashed' | 'dashdot' | 'dotted'], optional
label : string, optional, default: ''
Returns
-------
lines : `~matplotlib.collections.LineCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.LineCollection` properties.
See also
--------
hlines : horizontal lines
axvline: vertical line across the axes
"""
self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
x = self.convert_xunits(x)
ymin = self.convert_yunits(ymin)
ymax = self.convert_yunits(ymax)
if not iterable(x):
x = [x]
if not iterable(ymin):
ymin = [ymin]
if not iterable(ymax):
ymax = [ymax]
x, ymin, ymax = cbook.delete_masked_points(x, ymin, ymax)
x = np.ravel(x)
ymin = np.resize(ymin, x.shape)
ymax = np.resize(ymax, x.shape)
verts = [((thisx, thisymin), (thisx, thisymax))
for thisx, thisymin, thisymax in zip(x, ymin, ymax)]
lines = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(lines, autolim=False)
lines.update(kwargs)
if len(x) > 0:
minx = x.min()
maxx = x.max()
miny = min(ymin.min(), ymax.min())
maxy = max(ymin.max(), ymax.max())
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return lines
[docs] @_preprocess_data(replace_names=["positions", "lineoffsets",
"linelengths", "linewidths",
"colors", "linestyles"],
label_namer=None)
@docstring.dedent_interpd
def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
linelengths=1, linewidths=None, colors=None,
linestyles='solid', **kwargs):
"""
Plot identical parallel lines at the given positions.
*positions* should be a 1D or 2D array-like object, with each row
corresponding to a row or column of lines.
This type of plot is commonly used in neuroscience for representing
neural events, where it is usually called a spike raster, dot raster,
or raster plot.
However, it is useful in any situation where you wish to show the
timing or position of multiple sets of discrete events, such as the
arrival times of people to a business on each day of the month or the
date of hurricanes each year of the last century.
Parameters
----------
positions : 1D or 2D array-like object
Each value is an event. If *positions* is a 2D array-like, each
row corresponds to a row or a column of lines (depending on the
*orientation* parameter).
orientation : {'horizontal', 'vertical'}, optional
Controls the direction of the event collections:
- 'horizontal' : the lines are arranged horizontally in rows,
and are vertical.
- 'vertical' : the lines are arranged vertically in columns,
and are horizontal.
lineoffsets : scalar or sequence of scalars, optional, default: 1
The offset of the center of the lines from the origin, in the
direction orthogonal to *orientation*.
linelengths : scalar or sequence of scalars, optional, default: 1
The total height of the lines (i.e. the lines stretches from
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).
linewidths : scalar, scalar sequence or None, optional, default: None
The line width(s) of the event lines, in points. If it is None,
defaults to its rcParams setting.
colors : color, sequence of colors or None, optional, default: None
The color(s) of the event lines. If it is None, defaults to its
rcParams setting.
linestyles : str or tuple or a sequence of such values, optional
Default is 'solid'. Valid strings are ['solid', 'dashed',
'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
should be of the form::
(offset, onoffseq),
where *onoffseq* is an even length tuple of on and off ink
in points.
**kwargs : optional
Other keyword arguments are line collection properties. See
:class:`~matplotlib.collections.LineCollection` for a list of
the valid properties.
Returns
-------
list : A list of :class:`~.collections.EventCollection` objects.
Contains the :class:`~.collections.EventCollection` that
were added.
Notes
-----
For *linelengths*, *linewidths*, *colors*, and *linestyles*, if only
a single value is given, that value is applied to all lines. If an
array-like is given, it must have the same length as *positions*, and
each value will be applied to the corresponding row of the array.
Examples
--------
.. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
"""
self._process_unit_info(xdata=positions,
ydata=[lineoffsets, linelengths],
kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
positions = self.convert_xunits(positions)
lineoffsets = self.convert_yunits(lineoffsets)
linelengths = self.convert_yunits(linelengths)
if not iterable(positions):
positions = [positions]
elif any(iterable(position) for position in positions):
positions = [np.asanyarray(position) for position in positions]
else:
positions = [np.asanyarray(positions)]
if len(positions) == 0:
return []
# prevent 'singular' keys from **kwargs dict from overriding the effect
# of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
colors = cbook.local_over_kwdict(colors, kwargs, 'color')
linewidths = cbook.local_over_kwdict(linewidths, kwargs, 'linewidth')
linestyles = cbook.local_over_kwdict(linestyles, kwargs, 'linestyle')
if not iterable(lineoffsets):
lineoffsets = [lineoffsets]
if not iterable(linelengths):
linelengths = [linelengths]
if not iterable(linewidths):
linewidths = [linewidths]
if not iterable(colors):
colors = [colors]
if hasattr(linestyles, 'lower') or not iterable(linestyles):
linestyles = [linestyles]
lineoffsets = np.asarray(lineoffsets)
linelengths = np.asarray(linelengths)
linewidths = np.asarray(linewidths)
if len(lineoffsets) == 0:
lineoffsets = [None]
if len(linelengths) == 0:
linelengths = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(colors) == 0:
colors = [None]
try:
# Early conversion of the colors into RGBA values to take care
# of cases like colors='0.5' or colors='C1'. (Issue #8193)
colors = mcolors.to_rgba_array(colors)
except ValueError:
# Will fail if any element of *colors* is None. But as long
# as len(colors) == 1 or len(positions), the rest of the
# code should process *colors* properly.
pass
if len(lineoffsets) == 1 and len(positions) != 1:
lineoffsets = np.tile(lineoffsets, len(positions))
lineoffsets[0] = 0
lineoffsets = np.cumsum(lineoffsets)
if len(linelengths) == 1:
linelengths = np.tile(linelengths, len(positions))
if len(linewidths) == 1:
linewidths = np.tile(linewidths, len(positions))
if len(colors) == 1:
colors = list(colors)
colors = colors * len(positions)
if len(linestyles) == 1:
linestyles = [linestyles] * len(positions)
if len(lineoffsets) != len(positions):
raise ValueError('lineoffsets and positions are unequal sized '
'sequences')
if len(linelengths) != len(positions):
raise ValueError('linelengths and positions are unequal sized '
'sequences')
if len(linewidths) != len(positions):
raise ValueError('linewidths and positions are unequal sized '
'sequences')
if len(colors) != len(positions):
raise ValueError('colors and positions are unequal sized '
'sequences')
if len(linestyles) != len(positions):
raise ValueError('linestyles and positions are unequal sized '
'sequences')
colls = []
for position, lineoffset, linelength, linewidth, color, linestyle in \
zip(positions, lineoffsets, linelengths, linewidths,
colors, linestyles):
coll = mcoll.EventCollection(position,
orientation=orientation,
lineoffset=lineoffset,
linelength=linelength,
linewidth=linewidth,
color=color,
linestyle=linestyle)
self.add_collection(coll, autolim=False)
coll.update(kwargs)
colls.append(coll)
if len(positions) > 0:
# try to get min/max
min_max = [(np.min(_p), np.max(_p)) for _p in positions
if len(_p) > 0]
# if we have any non-empty positions, try to autoscale
if len(min_max) > 0:
mins, maxes = zip(*min_max)
minpos = np.min(mins)
maxpos = np.max(maxes)
minline = (lineoffsets - linelengths).min()
maxline = (lineoffsets + linelengths).max()
if (orientation is not None and
orientation.lower() == "vertical"):
corners = (minline, minpos), (maxline, maxpos)
else: # "horizontal", None or "none" (see EventCollection)
corners = (minpos, minline), (maxpos, maxline)
self.update_datalim(corners)
self.autoscale_view()
return colls
# ### Basic plotting
# The label_naming happens in `matplotlib.axes._base._plot_args`
[docs] @_preprocess_data(replace_names=["x", "y"],
positional_parameter_names=_plot_args_replacer,
label_namer=None)
@docstring.dedent_interpd
def plot(self, *args, **kwargs):
"""
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
The coordinates of the points or line nodes are given by *x*, *y*.
The optional parameter *fmt* is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the *Notes* section below.
>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses
You can use `.Line2D` properties as keyword arguments for more
control on the appearance. Line properties and *fmt* can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
When conflicting with *fmt*, keyword arguments take precedence.
**Plotting labelled data**
There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index ``obj['y']``). Instead of giving
the data in *x* and *y*, you can provide the object in the *data*
parameter and just give the labels for *x* and *y*::
>>> plot('xlabel', 'ylabel', data=obj)
All indexable objects are supported. This could e.g. be a `dict`, a
`pandas.DataFame` or a structured numpy array.
**Plotting multiple sets of data**
There are various ways to plot multiple sets of data.
- The most straight forward way is just to call `plot` multiple times.
Example:
>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')
- Alternatively, if your data is already a 2d array, you can pass it
directly to *x*, *y*. A separate data set will be drawn for every
column.
Example: an array ``a`` where the first column represents the *x*
values and the other columns are the *y* columns::
>>> plot(a[0], a[1:])
- The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
groups::
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the *data*
parameter.
By default, each line is assigned a different style specified by a
'style cycle'. The *fmt* and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using the
'axes.prop_cycle' rcParam.
Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
*x* values are optional. If not given, they default to
``[0, ..., N-1]``.
Commonly, these parameters are arrays of length N. However,
scalars are supported as well (equivalent to an array with
constant value).
The parameters can also be 2-dimensional. Then, the columns
represent separate data sets.
fmt : str, optional
A format string, e.g. 'ro' for red circles. See the *Notes*
section for a full description of the format strings.
Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*.
.. note::
Technically there's a slight ambiguity in calls where the
second label is a valid *fmt*. `plot('n', 'o', data=obj)`
could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
`plot('n', 'o', '', data=obj)`.
Other Parameters
----------------
scalex, scaley : bool, optional, default: True
These parameters determined if the view limits are adapted to
the data limits. The values are passed on to `autoscale_view`.
**kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::
>>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
>>> plot([1,2,3], [1,4,9], 'rs', label='line 2')
If you make multiple lines with one plot command, the kwargs
apply to all those lines.
Here is a list of available `.Line2D` properties:
%(Line2D)s
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
See Also
--------
scatter : XY scatter plot with markers of variing size and/or color (
sometimes also called bubble chart).
Notes
-----
**Format Strings**
A format string consists of a part for color, marker and line::
fmt = '[color][marker][line]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If ``line`` is given, but no ``marker``,
the data will be a line without markers.
**Colors**
The following color abbreviations are supported:
============= ===============================
character color
============= ===============================
``'b'`` blue
``'g'`` green
``'r'`` red
``'c'`` cyan
``'m'`` magenta
``'y'`` yellow
``'k'`` black
``'w'`` white
============= ===============================
If the color is the only part of the format string, you can
additionally use any `matplotlib.colors` spec, e.g. full names
(``'green'``) or hex strings (``'#008000'``).
**Markers**
============= ===============================
character description
============= ===============================
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
============= ===============================
**Line Styles**
============= ===============================
character description
============= ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
============= ===============================
Example format strings::
'b' # blue markers with default shape
'ro' # red circles
'g-' # green solid line
'--' # dashed line with default color
'k^:' # black triangle_up markers connected by a dotted line
"""
scalex = kwargs.pop('scalex', True)
scaley = kwargs.pop('scaley', True)
if not self._hold:
self.cla()
lines = []
kwargs = cbook.normalize_kwargs(kwargs, _alias_map)
for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)
self.autoscale_view(scalex=scalex, scaley=scaley)
return lines
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
**kwargs):
"""
Plot data that contains dates.
Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
However, the axis labels are formatted as dates depending on *xdate*
and *ydate*.
Parameters
----------
x, y : array-like
The coordinates of the data points. If *xdate* or *ydate* is
*True*, the respective values *x* or *y* are interpreted as
:ref:`Matplotlib dates <date-format>`.
fmt : str, optional
The plot format string. For details, see the corresponding
parameter in `.plot`.
tz : [ *None* | timezone string | :class:`tzinfo` instance]
The time zone to use in labeling dates. If *None*, defaults to
rcParam ``timezone``.
xdate : bool, optional, default: True
If *True*, the *x*-axis will be interpreted as Matplotlib dates.
ydate : bool, optional, default: False
If *True*, the *y*-axis will be interpreted as Matplotlib dates.
Returns
-------
lines
A list of `~.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
matplotlib.dates : Helper functions on dates.
matplotlib.dates.date2num : Convert dates to num.
matplotlib.dates.num2date : Convert num to dates.
matplotlib.dates.drange : Create an equally spaced sequence of dates.
Notes
-----
If you are using custom date tickers and formatters, it may be
necessary to set the formatters/locators after the call to
`.plot_date`. `.plot_date` will set the default tick locator to
`.AutoDateLocator` (if the tick locator is not already set to a
`.DateLocator` instance) and the default tick formatter to
`.AutoDateFormatter` (if the tick formatter is not already set to a
`.DateFormatter` instance).
"""
if not self._hold:
self.cla()
if xdate:
self.xaxis_date(tz)
if ydate:
self.yaxis_date(tz)
ret = self.plot(x, y, fmt, **kwargs)
self.autoscale_view()
return ret
# @_preprocess_data() # let 'plot' do the unpacking..
[docs] @docstring.dedent_interpd
def loglog(self, *args, **kwargs):
"""
Make a plot with log scaling on both the x and y axis.
Call signatures::
loglog([x], y, [fmt], data=None, **kwargs)
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
both the x-axis and the y-axis to log scaling. All of the concepts and
parameters of plot can be used here as well.
The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control
the x/y-axis properties. They are just forwarded to `.Axes.set_xscale`
and `.Axes.set_yscale`.
Parameters
----------
basex, basey : scalar, optional, default 10
Base of the x/y logarithm.
subsx, subsy : sequence, optional
The location of the minor x/y ticks. If *None*, reasonable
locations are automatically chosen depending on the number of
decades in the plot.
See `.Axes.set_xscale` / `.Axes.set_yscale` for details.
nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask'
Non-positive values in x or y can be masked as invalid, or clipped
to a very small positive number.
Returns
-------
lines
A list of `~.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
if not self._hold:
self.cla()
dx = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
if k in kwargs}
dy = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
if k in kwargs}
self.set_xscale('log', **dx)
self.set_yscale('log', **dy)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
# @_preprocess_data() # let 'plot' do the unpacking..
[docs] @docstring.dedent_interpd
def semilogx(self, *args, **kwargs):
"""
Make a plot with log scaling on the x axis.
Call signatures::
semilogx([x], y, [fmt], data=None, **kwargs)
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
the x-axis to log scaling. All of the concepts and parameters of plot
can be used here as well.
The additional parameters *basex*, *subsx* and *nonposx* control the
x-axis properties. They are just forwarded to `.Axes.set_xscale`.
Parameters
----------
basex : scalar, optional, default 10
Base of the x logarithm.
subsx : array_like, optional
The location of the minor xticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_xscale` for details.
nonposx : {'mask', 'clip'}, optional, default 'mask'
Non-positive values in x can be masked as invalid, or clipped to a
very small positive number.
Returns
-------
lines
A list of `~.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
if not self._hold:
self.cla()
d = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
if k in kwargs}
self.set_xscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
# @_preprocess_data() # let 'plot' do the unpacking..
[docs] @docstring.dedent_interpd
def semilogy(self, *args, **kwargs):
"""
Make a plot with log scaling on the y axis.
Call signatures::
semilogy([x], y, [fmt], data=None, **kwargs)
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
the y-axis to log scaling. All of the concepts and parameters of plot
can be used here as well.
The additional parameters *basey*, *subsy* and *nonposy* control the
y-axis properties. They are just forwarded to `.Axes.set_yscale`.
Parameters
----------
basey : scalar, optional, default 10
Base of the y logarithm.
subsy : array_like, optional
The location of the minor yticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_yscale` for details.
nonposy : {'mask', 'clip'}, optional, default 'mask'
Non-positive values in y can be masked as invalid, or clipped to a
very small positive number.
Returns
-------
lines
A list of `~.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
if not self._hold:
self.cla()
d = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
if k in kwargs}
self.set_yscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
[docs] @_preprocess_data(replace_names=["x"], label_namer="x")
def acorr(self, x, **kwargs):
"""
Plot the autocorrelation of *x*.
Parameters
----------
x : sequence of scalar
hold : bool, optional, *deprecated*, default: True
detrend : callable, optional, default: `mlab.detrend_none`
*x* is detrended by the *detrend* callable. Default is no
normalization.
normed : bool, optional, default: True
If ``True``, input vectors are normalised to unit length.
usevlines : bool, optional, default: True
If ``True``, `Axes.vlines` is used to plot the vertical lines from
the origin to the acorr. Otherwise, `Axes.plot` is used.
maxlags : integer, optional, default: 10
Number of lags to show. If ``None``, will return all
``2 * len(x) - 1`` lags.
Returns
-------
lags : array (lenth ``2*maxlags+1``)
lag vector.
c : array (length ``2*maxlags+1``)
auto correlation vector.
line : `.LineCollection` or `.Line2D`
`.Artist` added to the axes of the correlation.
`.LineCollection` if *usevlines* is True
`.Line2D` if *usevlines* is False
b : `.Line2D` or None
Horizontal line at 0 if *usevlines* is True
None *usevlines* is False
Other Parameters
----------------
linestyle : `~matplotlib.lines.Line2D` prop, optional, default: None
Only used if usevlines is ``False``.
marker : string, optional, default: 'o'
Notes
-----
The cross correlation is performed with :func:`numpy.correlate` with
``mode = 2``.
"""
if "hold" in kwargs:
warnings.warn("the 'hold' kwarg is deprecated", mplDeprecation)
return self.xcorr(x, x, **kwargs)
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer="y")
def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):
r"""
Plot the cross correlation between *x* and *y*.
The correlation with lag k is defined as sum_n x[n+k] * conj(y[n]).
Parameters
----------
x : sequence of scalars of length n
y : sequence of scalars of length n
hold : bool, optional, *deprecated*, default: True
detrend : callable, optional, default: `mlab.detrend_none`
*x* is detrended by the *detrend* callable. Default is no
normalization.
normed : bool, optional, default: True
If ``True``, input vectors are normalised to unit length.
usevlines : bool, optional, default: True
If ``True``, `Axes.vlines` is used to plot the vertical lines from
the origin to the acorr. Otherwise, `Axes.plot` is used.
maxlags : int, optional
Number of lags to show. If None, will return all ``2 * len(x) - 1``
lags. Default is 10.
Returns
-------
lags : array (lenth ``2*maxlags+1``)
lag vector.
c : array (length ``2*maxlags+1``)
auto correlation vector.
line : `.LineCollection` or `.Line2D`
`.Artist` added to the axes of the correlation
`.LineCollection` if *usevlines* is True
`.Line2D` if *usevlines* is False
b : `.Line2D` or None
Horizontal line at 0 if *usevlines* is True
None *usevlines* is False
Other Parameters
----------------
linestyle : `~matplotlib.lines.Line2D` property, optional
Only used if usevlines is ``False``.
marker : string, optional
Default is 'o'.
Notes
-----
The cross correlation is performed with :func:`numpy.correlate` with
``mode = 2``.
"""
if "hold" in kwargs:
warnings.warn("the 'hold' kwarg is deprecated", mplDeprecation)
Nx = len(x)
if Nx != len(y):
raise ValueError('x and y must be equal length')
x = detrend(np.asarray(x))
y = detrend(np.asarray(y))
correls = np.correlate(x, y, mode=2)
if normed:
correls /= np.sqrt(np.dot(x, x) * np.dot(y, y))
if maxlags is None:
maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maxlags must be None or strictly '
'positive < %d' % Nx)
lags = np.arange(-maxlags, maxlags + 1)
correls = correls[Nx - 1 - maxlags:Nx + maxlags]
if usevlines:
a = self.vlines(lags, [0], correls, **kwargs)
# Make label empty so only vertical lines get a legend entry
kwargs.pop('label', '')
b = self.axhline(**kwargs)
else:
kwargs.setdefault('marker', 'o')
kwargs.setdefault('linestyle', 'None')
a, = self.plot(lags, correls, **kwargs)
b = None
return lags, correls, a, b
#### Specialized plotting
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer="y")
def step(self, x, y, *args, **kwargs):
"""
Make a step plot.
Call signatures::
step(x, y, [fmt], *, data=None, where='pre', **kwargs)
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)
This is just a thin wrapper around `.plot` which changes some
formatting options. Most of the concepts and parameters of plot can be
used here as well.
Parameters
----------
x : array_like
1-D sequence of x positions. It is assumed, but not checked, that
it is uniformly increasing.
y : array_like
1-D sequence of y levels.
fmt : str, optional
A format string, e.g. 'g' for a green line. See `.plot` for a more
detailed description.
Note: While full format strings are accepted, it is recommended to
only specify the color. Line styles are currently ignored (use
the keyword argument *linestyle* instead). Markers are accepted
and plotted on the given positions, however, this is a rarely
needed feature for step plots.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*.
where : {'pre', 'post', 'mid'}, optional, default 'pre'
Define where the steps should be placed:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
Additional parameters are the same as those for `.plot`.
Notes
-----
.. [notes section required to get data note injection right]
"""
where = kwargs.pop('where', 'pre')
if where not in ('pre', 'post', 'mid'):
raise ValueError("'where' argument to step must be "
"'pre', 'post' or 'mid'")
usr_linestyle = kwargs.pop('linestyle', '')
kwargs['linestyle'] = 'steps-' + where + usr_linestyle
return self.plot(x, y, *args, **kwargs)
[docs] @_preprocess_data(replace_names=["x", "left",
"height", "width",
"y", "bottom",
"color", "edgecolor", "linewidth",
"tick_label", "xerr", "yerr",
"ecolor"],
label_namer=None,
replace_all_args=True
)
@docstring.dedent_interpd
def bar(self, *args, **kwargs):
r"""
Make a bar plot.
Call signatures::
bar(x, height, *, align='center', **kwargs)
bar(x, height, width, *, align='center', **kwargs)
bar(x, height, width, bottom, *, align='center', **kwargs)
The bars are positioned at *x* with the given *align* ment. Their
dimensions are given by *width* and *height*. The vertical baseline
is *bottom* (default 0).
Each of *x*, *height*, *width*, and *bottom* may either be a scalar
applying to all bars, or it may be a sequence of length N providing a
separate value for each bar.
Parameters
----------
x : sequence of scalars
The x coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.
height : scalar or sequence of scalars
The height(s) of the bars.
width : scalar or array-like, optional
The width(s) of the bars (default: 0.8).
bottom : scalar or array-like, optional
The y coordinate(s) of the bars bases (default: 0).
align : {'center', 'edge'}, optional, default: 'center'
Alignment of the bars to the *x* coordinates:
- 'center': Center the base on the *x* positions.
- 'edge': Align the left edges of the bars with the *x* positions.
To align the bars on the right edge pass a negative *width* and
``align='edge'``.
Returns
-------
container : `.BarContainer`
Container with all the bars and optionally errorbars.
Other Parameters
----------------
color : scalar or array-like, optional
The colors of the bar faces.
edgecolor : scalar or array-like, optional
The colors of the bar edges.
linewidth : scalar or array-like, optional
Width of the bar edge(s). If 0, don't draw edges.
tick_label : string or array-like, optional
The tick labels of the bars.
Default: None (Use default numeric labels.)
xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional
If not *None*, add horizontal / vertical errorbars to the bar tips.
The values are +/- sizes relative to the data:
- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2,N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the
upper errors.
- *None*: No errorbar. (Default)
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
ecolor : scalar or array-like, optional, default: 'black'
The line color of the errorbars.
capsize : scalar, optional
The length of the error bar caps in points.
Default: None, which will take the value from
:rc:`errorbar.capsize`.
error_kw : dict, optional
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
method. Values of *ecolor* or *capsize* defined here take
precedence over the independent kwargs.
log : bool, optional, default: False
If *True*, set the y-axis to be log scale.
orientation : {'vertical', 'horizontal'}, optional
*This is for internal use only.* Please use `barh` for
horizontal bar plots. Default: 'vertical'.
See also
--------
barh: Plot a horizontal bar plot.
Notes
-----
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Detail: *xerr* and *yerr* are passed directly to
:meth:`errorbar`, so they can also have shape 2xN for
independent specification of lower and upper errors.
Other optional kwargs:
%(Rectangle)s
"""
kwargs = cbook.normalize_kwargs(kwargs, mpatches._patch_alias_map)
# this is using the lambdas to do the arg/kwarg unpacking rather
# than trying to re-implement all of that logic our selves.
matchers = [
(lambda x, height, width=0.8, bottom=None, **kwargs:
(False, x, height, width, bottom, kwargs)),
(lambda left, height, width=0.8, bottom=None, **kwargs:
(True, left, height, width, bottom, kwargs)),
]
exps = []
for matcher in matchers:
try:
dp, x, height, width, y, kwargs = matcher(*args, **kwargs)
except TypeError as e:
# This can only come from a no-match as there is
# no other logic in the matchers.
exps.append(e)
else:
break
else:
raise exps[0]
# if we matched the second-case, then the user passed in
# left=val as a kwarg which we want to deprecate
if dp:
warnings.warn(
"The *left* kwarg to `bar` is deprecated use *x* instead. "
"Support for *left* will be removed in Matplotlib 3.0",
mplDeprecation, stacklevel=2)
if not self._hold:
self.cla()
color = kwargs.pop('color', None)
if color is None:
color = self._get_patches_for_fill.get_next_color()
edgecolor = kwargs.pop('edgecolor', None)
linewidth = kwargs.pop('linewidth', None)
# Because xerr and yerr will be passed to errorbar,
# most dimension checking and processing will be left
# to the errorbar method.
xerr = kwargs.pop('xerr', None)
yerr = kwargs.pop('yerr', None)
error_kw = kwargs.pop('error_kw', dict())
ecolor = kwargs.pop('ecolor', 'k')
capsize = kwargs.pop('capsize', rcParams["errorbar.capsize"])
error_kw.setdefault('ecolor', ecolor)
error_kw.setdefault('capsize', capsize)
if rcParams['_internal.classic_mode']:
align = kwargs.pop('align', 'edge')
else:
align = kwargs.pop('align', 'center')
orientation = kwargs.pop('orientation', 'vertical')
log = kwargs.pop('log', False)
label = kwargs.pop('label', '')
tick_labels = kwargs.pop('tick_label', None)
adjust_ylim = False
adjust_xlim = False
if orientation == 'vertical':
if y is None:
if self.get_yscale() == 'log':
adjust_ylim = True
y = 0
elif orientation == 'horizontal':
if x is None:
if self.get_xscale() == 'log':
adjust_xlim = True
x = 0
if orientation == 'vertical':
self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
if log:
self.set_yscale('log', nonposy='clip')
elif orientation == 'horizontal':
self._process_unit_info(xdata=width, ydata=y, kwargs=kwargs)
if log:
self.set_xscale('log', nonposx='clip')
else:
raise ValueError('invalid orientation: %s' % orientation)
# lets do some conversions now since some types cannot be
# subtracted uniformly
if self.xaxis is not None:
x = self.convert_xunits(x)
width = self.convert_xunits(width)
if xerr is not None:
xerr = self.convert_xunits(xerr)
if self.yaxis is not None:
y = self.convert_yunits(y)
height = self.convert_yunits(height)
if yerr is not None:
yerr = self.convert_yunits(yerr)
x, height, width, y, linewidth = np.broadcast_arrays(
# Make args iterable too.
np.atleast_1d(x), height, width, y, linewidth)
# Now that units have been converted, set the tick locations.
if orientation == 'vertical':
tick_label_axis = self.xaxis
tick_label_position = x
elif orientation == 'horizontal':
tick_label_axis = self.yaxis
tick_label_position = y
linewidth = itertools.cycle(np.atleast_1d(linewidth))
color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
# Fallback if color == "none".
itertools.repeat([0, 0, 0, 0]))
if edgecolor is None:
edgecolor = itertools.repeat(None)
else:
edgecolor = itertools.chain(
itertools.cycle(mcolors.to_rgba_array(edgecolor)),
# Fallback if edgecolor == "none".
itertools.repeat([0, 0, 0, 0]))
# We will now resolve the alignment and really have
# left, bottom, width, height vectors
if align == 'center':
if orientation == 'vertical':
left = x - width / 2
bottom = y
elif orientation == 'horizontal':
bottom = y - height / 2
left = x
elif align == 'edge':
left = x
bottom = y
else:
raise ValueError('invalid alignment: %s' % align)
patches = []
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
for l, b, w, h, c, e, lw in args:
r = mpatches.Rectangle(
xy=(l, b), width=w, height=h,
facecolor=c,
edgecolor=e,
linewidth=lw,
label='_nolegend_',
)
r.update(kwargs)
r.get_path()._interpolation_steps = 100
if orientation == 'vertical':
r.sticky_edges.y.append(b)
elif orientation == 'horizontal':
r.sticky_edges.x.append(l)
self.add_patch(r)
patches.append(r)
holdstate = self._hold
self._hold = True # ensure hold is on before plotting errorbars
if xerr is not None or yerr is not None:
if orientation == 'vertical':
# using list comps rather than arrays to preserve unit info
ex = [l + 0.5 * w for l, w in zip(left, width)]
ey = [b + h for b, h in zip(bottom, height)]
elif orientation == 'horizontal':
# using list comps rather than arrays to preserve unit info
ex = [l + w for l, w in zip(left, width)]
ey = [b + 0.5 * h for b, h in zip(bottom, height)]
error_kw.setdefault("label", '_nolegend_')
errorbar = self.errorbar(ex, ey,
yerr=yerr, xerr=xerr,
fmt='none', **error_kw)
else:
errorbar = None
self._hold = holdstate # restore previous hold state
if adjust_xlim:
xmin, xmax = self.dataLim.intervalx
xmin = min(w for w in width if w > 0)
if xerr is not None:
xmin = xmin - np.max(xerr)
xmin = max(xmin * 0.9, 1e-100)
self.dataLim.intervalx = (xmin, xmax)
if adjust_ylim:
ymin, ymax = self.dataLim.intervaly
ymin = min(h for h in height if h > 0)
if yerr is not None:
ymin = ymin - np.max(yerr)
ymin = max(ymin * 0.9, 1e-100)
self.dataLim.intervaly = (ymin, ymax)
self.autoscale_view()
bar_container = BarContainer(patches, errorbar, label=label)
self.add_container(bar_container)
if tick_labels is not None:
tick_labels = _backports.broadcast_to(tick_labels, len(patches))
tick_label_axis.set_ticks(tick_label_position)
tick_label_axis.set_ticklabels(tick_labels)
return bar_container
[docs] @docstring.dedent_interpd
def barh(self, *args, **kwargs):
r"""
Make a horizontal bar plot.
Call signatures::
bar(y, width, *, align='center', **kwargs)
bar(y, width, height, *, align='center', **kwargs)
bar(y, width, height, left, *, align='center', **kwargs)
The bars are positioned at *y* with the given *align*. Their
dimensions are given by *width* and *height*. The horizontal baseline
is *left* (default 0).
Each of *y*, *width*, *height*, and *left* may either be a scalar
applying to all bars, or it may be a sequence of length N providing a
separate value for each bar.
Parameters
----------
y : scalar or array-like
The y coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.
width : scalar or array-like
The width(s) of the bars.
height : sequence of scalars, optional, default: 0.8
The heights of the bars.
left : sequence of scalars
The x coordinates of the left sides of the bars (default: 0).
align : {'center', 'edge'}, optional, default: 'center'
Alignment of the base to the *y* coordinates*:
- 'center': Center the bars on the *y* positions.
- 'edge': Align the bottom edges of the bars with the *y*
positions.
To align the bars on the top edge pass a negative *height* and
``align='edge'``.
Returns
-------
container : `.BarContainer`
Container with all the bars and optionally errorbars.
Other Parameters
----------------
color : scalar or array-like, optional
The colors of the bar faces.
edgecolor : scalar or array-like, optional
The colors of the bar edges.
linewidth : scalar or array-like, optional
Width of the bar edge(s). If 0, don't draw edges.
tick_label : string or array-like, optional
The tick labels of the bars.
Default: None (Use default numeric labels.)
xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional
If not ``None``, add horizontal / vertical errorbars to the
bar tips. The values are +/- sizes relative to the data:
- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2,N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the
upper errors.
- *None*: No errorbar. (default)
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
ecolor : scalar or array-like, optional, default: 'black'
The line color of the errorbars.
capsize : scalar, optional
The length of the error bar caps in points.
Default: None, which will take the value from
:rc:`errorbar.capsize`.
error_kw : dict, optional
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
method. Values of *ecolor* or *capsize* defined here take
precedence over the independent kwargs.
log : bool, optional, default: False
If ``True``, set the x-axis to be log scale.
See also
--------
bar: Plot a vertical bar plot.
Notes
-----
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Detail: *xerr* and *yerr* are passed directly to
:meth:`errorbar`, so they can also have shape 2xN for
independent specification of lower and upper errors.
Other optional kwargs:
%(Rectangle)s
"""
# this is using the lambdas to do the arg/kwarg unpacking rather
# than trying to re-implement all of that logic our selves.
matchers = [
(lambda y, width, height=0.8, left=None, **kwargs:
(False, y, width, height, left, kwargs)),
(lambda bottom, width, height=0.8, left=None, **kwargs:
(True, bottom, width, height, left, kwargs)),
]
excs = []
for matcher in matchers:
try:
dp, y, width, height, left, kwargs = matcher(*args, **kwargs)
except TypeError as e:
# This can only come from a no-match as there is
# no other logic in the matchers.
excs.append(e)
else:
break
else:
raise excs[0]
if dp:
warnings.warn(
"The *bottom* kwarg to `barh` is deprecated use *y* instead. "
"Support for *bottom* will be removed in Matplotlib 3.0",
mplDeprecation, stacklevel=2)
kwargs.setdefault('orientation', 'horizontal')
patches = self.bar(x=left, height=height, width=width,
bottom=y, **kwargs)
return patches
[docs] @_preprocess_data(label_namer=None)
@docstring.dedent_interpd
def broken_barh(self, xranges, yrange, **kwargs):
"""
Plot a horizontal sequence of rectangles.
A rectangle is drawn for each element of *xranges*. All rectangles
have the same vertical position and size defined by *yrange*.
This is a convenience function for instantiating a
`.BrokenBarHCollection`, adding it to the axes and autoscaling the
view.
Parameters
----------
xranges : sequence of tuples (*xmin*, *xwidth*)
The x-positions and extends of the rectangles. For each tuple
(*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
*xwidth*.
yranges : (*ymin*, *ymax*)
The y-position and extend for all the rectangles.
Other Parameters
----------------
**kwargs : :class:`.BrokenBarHCollection` properties
Each *kwarg* can be either a single argument applying to all
rectangles, e.g.::
facecolors='black'
or a sequence of arguments over which is cycled, e.g.::
facecolors=('black', 'blue')
would create interleaving black and blue rectangles.
Supported keywords:
%(BrokenBarHCollection)s
Returns
-------
collection : A :class:`~.collections.BrokenBarHCollection`
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
# process the unit information
if len(xranges):
xdata = cbook.safe_first_element(xranges)
else:
xdata = None
if len(yrange):
ydata = cbook.safe_first_element(yrange)
else:
ydata = None
self._process_unit_info(xdata=xdata,
ydata=ydata,
kwargs=kwargs)
xranges = self.convert_xunits(xranges)
yrange = self.convert_yunits(yrange)
col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs)
self.add_collection(col, autolim=True)
self.autoscale_view()
return col
[docs] @_preprocess_data(replace_all_args=True, label_namer=None)
def stem(self, *args, **kwargs):
"""
Create a stem plot.
A stem plot plots vertical lines at each *x* location from the baseline
to *y*, and places a marker there.
Call signature::
stem([x,] y, linefmt=None, markerfmt=None, basefmt=None)
The x-positions are optional. The formats may be provided either as
positional or as keyword-arguments.
Parameters
----------
x : array-like, optional
The x-positions of the stems. Default: (0, 1, ..., len(y) - 1).
y : array-like
The y-values of the stem heads.
linefmt : str, optional
A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:
========= =============
Character Line Style
========= =============
``'-'`` solid line
``'--'`` dashed line
``'-.'`` dash-dot line
``':'`` dotted line
========= =============
Default: 'C0-', i.e. solid line with the first color of the color
cycle.
Note: While it is technically possible to specify valid formats
other than color or color and linestyle (e.g. 'rx' or '-.'), this
is beyond the intention of the method and will most likely not
result in a reasonable reasonable plot.
markerfmt : str, optional
A string defining the properties of the markers at the stem heads.
Default: 'C0o', i.e. filled circles with the first color of the
color cycle.
basefmt : str, optional
A format string defining the properties of the baseline.
Default: 'C3-' ('C2-' in classic mode).
bottom : float, optional, default: 0
The y-position of the baseline.
label : str, optional, default: None
The label to use for the stems in legends.
Other Parameters
----------------
**kwargs
No other parameters are supported. They are currently ignored
silently for backward compatibility. This behavior is deprecated.
Future versions will not accept any other parameters and will
raise a TypeError instead.
Returns
-------
container : :class:`~matplotlib.container.StemContainer`
The container may be treated like a tuple
(*markerline*, *stemlines*, *baseline*)
Notes
-----
.. seealso::
The MATLAB function
`stem <http://www.mathworks.com/help/techdoc/ref/stem.html>`_
which inspired this method.
"""
# kwargs handling
# We would like to have a signature with explicit kewords:
# stem(*args, linefmt=None, markerfmt=None, basefmt=None,
# bottom=0, label=None)
# Unfortunately, this is not supported in Python 2.x. There, *args
# can only exist after keyword arguments.
linefmt = kwargs.pop('linefmt', None)
markerfmt = kwargs.pop('markerfmt', None)
basefmt = kwargs.pop('basefmt', None)
bottom = kwargs.pop('bottom', None)
if bottom is None:
bottom = 0
label = kwargs.pop('label', None)
if kwargs:
warn_deprecated(since='2.2',
message="stem() got an unexpected keyword "
"argument '%s'. This will raise a "
"TypeError in future versions." % (
next(k for k in kwargs), )
)
remember_hold = self._hold
if not self._hold:
self.cla()
self._hold = True
# Assume there's at least one data array
y = np.asarray(args[0])
args = args[1:]
# Try a second one
try:
second = np.asarray(args[0], dtype=float)
x, y = y, second
args = args[1:]
except (IndexError, ValueError):
# The second array doesn't make sense, or it doesn't exist
second = np.arange(len(y))
x = second
# defaults for formats
if linefmt is None:
try:
# fallback to positional argument
linefmt = args[0]
except IndexError:
linecolor = 'C0'
linemarker = 'None'
linestyle = '-'
else:
linestyle, linemarker, linecolor = \
_process_plot_format(linefmt)
else:
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
if markerfmt is None:
try:
# fallback to positional argument
markerfmt = args[1]
except IndexError:
markercolor = 'C0'
markermarker = 'o'
markerstyle = 'None'
else:
markerstyle, markermarker, markercolor = \
_process_plot_format(markerfmt)
else:
markerstyle, markermarker, markercolor = \
_process_plot_format(markerfmt)
if basefmt is None:
try:
# fallback to positional argument
basefmt = args[2]
except IndexError:
if rcParams['_internal.classic_mode']:
basecolor = 'C2'
else:
basecolor = 'C3'
basemarker = 'None'
basestyle = '-'
else:
basestyle, basemarker, basecolor = \
_process_plot_format(basefmt)
else:
basestyle, basemarker, basecolor = _process_plot_format(basefmt)
markerline, = self.plot(x, y, color=markercolor, linestyle=markerstyle,
marker=markermarker, label="_nolegend_")
stemlines = []
for thisx, thisy in zip(x, y):
l, = self.plot([thisx, thisx], [bottom, thisy],
color=linecolor, linestyle=linestyle,
marker=linemarker, label="_nolegend_")
stemlines.append(l)
baseline, = self.plot([np.min(x), np.max(x)], [bottom, bottom],
color=basecolor, linestyle=basestyle,
marker=basemarker, label="_nolegend_")
self._hold = remember_hold
stem_container = StemContainer((markerline, stemlines, baseline),
label=label)
self.add_container(stem_container)
return stem_container
[docs] @_preprocess_data(replace_names=["x", "explode", "labels", "colors"],
label_namer=None)
def pie(self, x, explode=None, labels=None, colors=None,
autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
startangle=None, radius=None, counterclock=True,
wedgeprops=None, textprops=None, center=(0, 0),
frame=False, rotatelabels=False):
"""
Plot a pie chart.
Make a pie chart of array *x*. The fractional area of each wedge is
given by ``x/sum(x)``. If ``sum(x) < 1``, then the values of *x* give
the fractional area directly and the array will not be normalized. The
resulting pie will have an empty wedge of size ``1 - sum(x)``.
The wedges are plotted counterclockwise, by default starting from the
x-axis.
Parameters
----------
x : array-like
The wedge sizes.
explode : array-like, optional, default: None
If not *None*, is a ``len(x)`` array which specifies the fraction
of the radius with which to offset each wedge.
labels : list, optional, default: None
A sequence of strings providing the labels for each wedge
colors : array-like, optional, default: None
A sequence of matplotlib color args through which the pie chart
will cycle. If *None*, will use the colors in the currently
active cycle.
autopct : None (default), string, or function, optional
If not *None*, is a string or function used to label the wedges
with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be ``fmt%pct``.
If it is a function, it will be called.
pctdistance : float, optional, default: 0.6
The ratio between the center of each pie slice and the start of
the text generated by *autopct*. Ignored if *autopct* is *None*.
shadow : bool, optional, default: False
Draw a shadow beneath the pie.
labeldistance : float, optional, default: 1.1
The radial distance at which the pie labels are drawn
startangle : float, optional, default: None
If not *None*, rotates the start of the pie chart by *angle*
degrees counterclockwise from the x-axis.
radius : float, optional, default: None
The radius of the pie, if *radius* is *None* it will be set to 1.
counterclock : bool, optional, default: True
Specify fractions direction, clockwise or counterclockwise.
wedgeprops : dict, optional, default: None
Dict of arguments passed to the wedge objects making the pie.
For example, you can pass in ``wedgeprops = {'linewidth': 3}``
to set the width of the wedge border lines equal to 3.
For more details, look at the doc/arguments of the wedge object.
By default ``clip_on=False``.
textprops : dict, optional, default: None
Dict of arguments to pass to the text objects.
center : list of float, optional, default: (0, 0)
Center position of the chart. Takes value (0, 0) or is a sequence
of 2 scalars.
frame : bool, optional, default: False
Plot axes frame with the chart if true.
rotatelabels : bool, optional, default: False
Rotate each label to the angle of the corresponding slice if true.
Returns
-------
patches : list
A sequence of :class:`matplotlib.patches.Wedge` instances
texts : list
A list of the label :class:`matplotlib.text.Text` instances.
autotexts : list
A list of :class:`~matplotlib.text.Text` instances for the numeric
labels. This will only be returned if the parameter *autopct* is
not *None*.
Notes
-----
The pie chart will probably look best if the figure and axes are
square, or the Axes aspect is equal.
"""
x = np.array(x, np.float32)
sx = x.sum()
if sx > 1:
x /= sx
if labels is None:
labels = [''] * len(x)
if explode is None:
explode = [0] * len(x)
if len(x) != len(labels):
raise ValueError("'label' must be of length 'x'")
if len(x) != len(explode):
raise ValueError("'explode' must be of length 'x'")
if colors is None:
get_next_color = self._get_patches_for_fill.get_next_color
else:
color_cycle = itertools.cycle(colors)
def get_next_color():
return next(color_cycle)
if radius is None:
radius = 1
# Starting theta1 is the start fraction of the circle
if startangle is None:
theta1 = 0
else:
theta1 = startangle / 360.0
# set default values in wedge_prop
if wedgeprops is None:
wedgeprops = {}
wedgeprops.setdefault('clip_on', False)
if textprops is None:
textprops = {}
textprops.setdefault('clip_on', False)
texts = []
slices = []
autotexts = []
i = 0
for frac, label, expl in zip(x, labels, explode):
x, y = center
theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
x += expl * math.cos(thetam)
y += expl * math.sin(thetam)
w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
360. * max(theta1, theta2),
facecolor=get_next_color(),
**wedgeprops)
slices.append(w)
self.add_patch(w)
w.set_label(label)
if shadow:
# make sure to add a shadow after the call to
# add_patch so the figure and transform props will be
# set
shad = mpatches.Shadow(w, -0.02, -0.02)
shad.set_zorder(0.9 * w.get_zorder())
shad.set_label('_nolegend_')
self.add_patch(shad)
xt = x + labeldistance * radius * math.cos(thetam)
yt = y + labeldistance * radius * math.sin(thetam)
label_alignment_h = xt > 0 and 'left' or 'right'
label_alignment_v = 'center'
label_rotation = 'horizontal'
if rotatelabels:
label_alignment_v = yt > 0 and 'bottom' or 'top'
label_rotation = np.rad2deg(thetam) + (0 if xt > 0 else 180)
t = self.text(xt, yt, label,
size=rcParams['xtick.labelsize'],
horizontalalignment=label_alignment_h,
verticalalignment=label_alignment_v,
rotation=label_rotation,
**textprops)
texts.append(t)
if autopct is not None:
xt = x + pctdistance * radius * math.cos(thetam)
yt = y + pctdistance * radius * math.sin(thetam)
if isinstance(autopct, six.string_types):
s = autopct % (100. * frac)
elif callable(autopct):
s = autopct(100. * frac)
else:
raise TypeError(
'autopct must be callable or a format string')
t = self.text(xt, yt, s,
horizontalalignment='center',
verticalalignment='center',
**textprops)
autotexts.append(t)
theta1 = theta2
i += 1
if not frame:
self.set_frame_on(False)
self.set_xlim((-1.25 + center[0],
1.25 + center[0]))
self.set_ylim((-1.25 + center[1],
1.25 + center[1]))
self.set_xticks([])
self.set_yticks([])
if autopct is None:
return slices, texts
else:
return slices, texts, autotexts
[docs] @_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
label_namer="y")
@docstring.dedent_interpd
def errorbar(self, x, y, yerr=None, xerr=None,
fmt='', ecolor=None, elinewidth=None, capsize=None,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1, capthick=None,
**kwargs):
"""
Plot y versus x as lines and/or markers with attached errorbars.
*x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
sizes. By default, this draws the data markers/lines as well the
errorbars. Use fmt='none' to draw errorbars without any data markers.
Parameters
----------
x, y : scalar or array-like
The data positions.
xerr, yerr : scalar or array-like, shape(N,) or shape(2,N), optional
The errorbar sizes:
- scalar: Symmetric +/- values for all data points.
- shape(N,): Symmetric +/-values for each data point.
- shape(2,N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the
upper errors.
- *None*: No errorbar.
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
fmt : plot format string, optional, default: ''
The format for the data points / data lines. See `.plot` for
details.
Use 'none' (case insensitive) to plot errorbars without any data
markers.
ecolor : mpl color, optional, default: None
A matplotlib color arg which gives the color the errorbar lines.
If None, use the color of the line connecting the markers.
elinewidth : scalar, optional, default: None
The linewidth of the errorbar lines. If None, the linewidth of
the current style is used.
capsize : scalar, optional, default: None
The length of the error bar caps in points. If None, it will take
the value from :rc:`errorbar.capsize`.
capthick : scalar, optional, default: None
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
This setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.
barsabove : bool, optional, default: False
If True, will plot the errorbars above the plot
symbols. Default is below.
lolims, uplims, xlolims, xuplims : bool, optional, default: None
These arguments can be used to indicate that a value gives only
upper/lower limits. In that case a caret symbol is used to
indicate this. *lims*-arguments may be of the same type as *xerr*
and *yerr*. To use limits with inverted axes, :meth:`set_xlim`
or :meth:`set_ylim` must be called before :meth:`errorbar`.
errorevery : positive integer, optional, default: 1
Subsamples the errorbars. e.g., if errorevery=5, errorbars for
every 5-th datapoint will be plotted. The data plot itself still
shows all data points.
Returns
-------
container : :class:`~.container.ErrorbarContainer`
The container contains:
- plotline: :class:`~matplotlib.lines.Line2D` instance of
x, y plot markers and/or line.
- caplines: A tuple of :class:`~matplotlib.lines.Line2D` instances
of the error bar caps.
- barlinecols: A tuple of
:class:`~matplotlib.collections.LineCollection` with the
horizontal and vertical error ranges.
Other Parameters
----------------
**kwargs :
All other keyword arguments are passed on to the plot
command for the markers. For example, this code makes big red
squares with thick green edges::
x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker='s', mfc='red',
mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewidth*.
Valid kwargs for the marker properties are `.Lines2D` properties:
%(Line2D)s
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
kwargs = cbook.normalize_kwargs(kwargs, _alias_map)
# anything that comes in as 'None', drop so the default thing
# happens down stream
kwargs = {k: v for k, v in kwargs.items() if v is not None}
kwargs.setdefault('zorder', 2)
if errorevery < 1:
raise ValueError(
'errorevery has to be a strictly positive integer')
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
if not self._hold:
self.cla()
holdstate = self._hold
self._hold = True
plot_line = (fmt.lower() != 'none')
label = kwargs.pop("label", None)
if fmt == '':
fmt_style_kwargs = {}
else:
fmt_style_kwargs = {k: v for k, v in
zip(('linestyle', 'marker', 'color'),
_process_plot_format(fmt)) if v is not None}
if fmt == 'none':
# Remove alpha=0 color that _process_plot_format returns
fmt_style_kwargs.pop('color')
if ('color' in kwargs or 'color' in fmt_style_kwargs or
ecolor is not None):
base_style = {}
if 'color' in kwargs:
base_style['color'] = kwargs.pop('color')
else:
base_style = next(self._get_lines.prop_cycler)
base_style['label'] = '_nolegend_'
base_style.update(fmt_style_kwargs)
if 'color' not in base_style:
base_style['color'] = 'C0'
if ecolor is None:
ecolor = base_style['color']
# make sure all the args are iterable; use lists not arrays to
# preserve units
if not iterable(x):
x = [x]
if not iterable(y):
y = [y]
if xerr is not None:
if not iterable(xerr):
xerr = [xerr] * len(x)
if yerr is not None:
if not iterable(yerr):
yerr = [yerr] * len(y)
# make the style dict for the 'normal' plot line
plot_line_style = dict(base_style)
plot_line_style.update(**kwargs)
if barsabove:
plot_line_style['zorder'] = kwargs['zorder'] - .1
else:
plot_line_style['zorder'] = kwargs['zorder'] + .1
# make the style dict for the line collections (the bars)
eb_lines_style = dict(base_style)
eb_lines_style.pop('marker', None)
eb_lines_style.pop('linestyle', None)
eb_lines_style['color'] = ecolor
if elinewidth:
eb_lines_style['linewidth'] = elinewidth
elif 'linewidth' in kwargs:
eb_lines_style['linewidth'] = kwargs['linewidth']
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
if key in kwargs:
eb_lines_style[key] = kwargs[key]
# set up cap style dictionary
eb_cap_style = dict(base_style)
# eject any marker information from format string
eb_cap_style.pop('marker', None)
eb_lines_style.pop('markerfacecolor', None)
eb_lines_style.pop('markeredgewidth', None)
eb_lines_style.pop('markeredgecolor', None)
eb_cap_style.pop('ls', None)
eb_cap_style['linestyle'] = 'none'
if capsize is None:
capsize = rcParams["errorbar.capsize"]
if capsize > 0:
eb_cap_style['markersize'] = 2. * capsize
if capthick is not None:
eb_cap_style['markeredgewidth'] = capthick
# For backwards-compat, allow explicit setting of
# 'markeredgewidth' to over-ride capthick.
for key in ('markeredgewidth', 'transform', 'alpha',
'zorder', 'rasterized'):
if key in kwargs:
eb_cap_style[key] = kwargs[key]
eb_cap_style['color'] = ecolor
data_line = None
if plot_line:
data_line = mlines.Line2D(x, y, **plot_line_style)
self.add_line(data_line)
barcols = []
caplines = []
# arrays fine here, they are booleans and hence not units
def _bool_asarray_helper(d, expected):
if not iterable(d):
return np.asarray([d] * expected, bool)
else:
return np.asarray(d, bool)
lolims = _bool_asarray_helper(lolims, len(x))
uplims = _bool_asarray_helper(uplims, len(x))
xlolims = _bool_asarray_helper(xlolims, len(x))
xuplims = _bool_asarray_helper(xuplims, len(x))
everymask = np.arange(len(x)) % errorevery == 0
def xywhere(xs, ys, mask):
"""
return xs[mask], ys[mask] where mask is True but xs and
ys are not arrays
"""
assert len(xs) == len(ys)
assert len(xs) == len(mask)
xs = [thisx for thisx, b in zip(xs, mask) if b]
ys = [thisy for thisy, b in zip(ys, mask) if b]
return xs, ys
def extract_err(err, data):
'''private function to compute error bars
Parameters
----------
err : iterable
xerr or yerr from errorbar
data : iterable
x or y from errorbar
'''
try:
a, b = err
except (TypeError, ValueError):
pass
else:
if iterable(a) and iterable(b):
# using list comps rather than arrays to preserve units
low = [thisx - thiserr for (thisx, thiserr)
in cbook.safezip(data, a)]
high = [thisx + thiserr for (thisx, thiserr)
in cbook.safezip(data, b)]
return low, high
# Check if xerr is scalar or symmetric. Asymmetric is handled
# above. This prevents Nx2 arrays from accidentally
# being accepted, when the user meant the 2xN transpose.
# special case for empty lists
if len(err) > 1:
fe = safe_first_element(err)
if (len(err) != len(data) or np.size(fe) > 1):
raise ValueError("err must be [ scalar | N, Nx1 "
"or 2xN array-like ]")
# using list comps rather than arrays to preserve units
low = [thisx - thiserr for (thisx, thiserr)
in cbook.safezip(data, err)]
high = [thisx + thiserr for (thisx, thiserr)
in cbook.safezip(data, err)]
return low, high
if xerr is not None:
left, right = extract_err(xerr, x)
# select points without upper/lower limits in x and
# draw normal errorbars for these points
noxlims = ~(xlolims | xuplims)
if noxlims.any() or len(noxlims) == 0:
yo, _ = xywhere(y, right, noxlims & everymask)
lo, ro = xywhere(left, right, noxlims & everymask)
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
if capsize > 0:
caplines.append(mlines.Line2D(lo, yo, marker='|',
**eb_cap_style))
caplines.append(mlines.Line2D(ro, yo, marker='|',
**eb_cap_style))
if xlolims.any():
yo, _ = xywhere(y, right, xlolims & everymask)
lo, ro = xywhere(x, right, xlolims & everymask)
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
rightup, yup = xywhere(right, y, xlolims & everymask)
if self.xaxis_inverted():
marker = mlines.CARETLEFTBASE
else:
marker = mlines.CARETRIGHTBASE
caplines.append(
mlines.Line2D(rightup, yup, ls='None', marker=marker,
**eb_cap_style))
if capsize > 0:
xlo, ylo = xywhere(x, y, xlolims & everymask)
caplines.append(mlines.Line2D(xlo, ylo, marker='|',
**eb_cap_style))
if xuplims.any():
yo, _ = xywhere(y, right, xuplims & everymask)
lo, ro = xywhere(left, x, xuplims & everymask)
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
leftlo, ylo = xywhere(left, y, xuplims & everymask)
if self.xaxis_inverted():
marker = mlines.CARETRIGHTBASE
else:
marker = mlines.CARETLEFTBASE
caplines.append(
mlines.Line2D(leftlo, ylo, ls='None', marker=marker,
**eb_cap_style))
if capsize > 0:
xup, yup = xywhere(x, y, xuplims & everymask)
caplines.append(mlines.Line2D(xup, yup, marker='|',
**eb_cap_style))
if yerr is not None:
lower, upper = extract_err(yerr, y)
# select points without upper/lower limits in y and
# draw normal errorbars for these points
noylims = ~(lolims | uplims)
if noylims.any() or len(noylims) == 0:
xo, _ = xywhere(x, lower, noylims & everymask)
lo, uo = xywhere(lower, upper, noylims & everymask)
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
if capsize > 0:
caplines.append(mlines.Line2D(xo, lo, marker='_',
**eb_cap_style))
caplines.append(mlines.Line2D(xo, uo, marker='_',
**eb_cap_style))
if lolims.any():
xo, _ = xywhere(x, lower, lolims & everymask)
lo, uo = xywhere(y, upper, lolims & everymask)
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
xup, upperup = xywhere(x, upper, lolims & everymask)
if self.yaxis_inverted():
marker = mlines.CARETDOWNBASE
else:
marker = mlines.CARETUPBASE
caplines.append(
mlines.Line2D(xup, upperup, ls='None', marker=marker,
**eb_cap_style))
if capsize > 0:
xlo, ylo = xywhere(x, y, lolims & everymask)
caplines.append(mlines.Line2D(xlo, ylo, marker='_',
**eb_cap_style))
if uplims.any():
xo, _ = xywhere(x, lower, uplims & everymask)
lo, uo = xywhere(lower, y, uplims & everymask)
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
xlo, lowerlo = xywhere(x, lower, uplims & everymask)
if self.yaxis_inverted():
marker = mlines.CARETUPBASE
else:
marker = mlines.CARETDOWNBASE
caplines.append(
mlines.Line2D(xlo, lowerlo, ls='None', marker=marker,
**eb_cap_style))
if capsize > 0:
xup, yup = xywhere(x, y, uplims & everymask)
caplines.append(mlines.Line2D(xup, yup, marker='_',
**eb_cap_style))
for l in caplines:
self.add_line(l)
self.autoscale_view()
self._hold = holdstate
errorbar_container = ErrorbarContainer((data_line, tuple(caplines),
tuple(barcols)),
has_xerr=(xerr is not None),
has_yerr=(yerr is not None),
label=label)
self.containers.append(errorbar_container)
return errorbar_container # (l0, caplines, barcols)
[docs] @_preprocess_data(label_namer=None)
def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
positions=None, widths=None, patch_artist=None,
bootstrap=None, usermedians=None, conf_intervals=None,
meanline=None, showmeans=None, showcaps=None,
showbox=None, showfliers=None, boxprops=None,
labels=None, flierprops=None, medianprops=None,
meanprops=None, capprops=None, whiskerprops=None,
manage_xticks=True, autorange=False, zorder=None):
"""
Make a box and whisker plot.
Make a box and whisker plot for each column of ``x`` or each
vector in sequence ``x``. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
Parameters
----------
x : Array or a sequence of vectors.
The input data.
notch : bool, optional (False)
If `True`, will produce a notched box plot. Otherwise, a
rectangular boxplot is produced. The notches represent the
confidence interval (CI) around the median. See the entry
for the ``bootstrap`` parameter for information regarding
how the locations of the notches are computed.
.. note::
In cases where the values of the CI are less than the
lower quartile or greater than the upper quartile, the
notches will extend beyond the box, giving it a
distinctive "flipped" appearance. This is expected
behavior and consistent with other statistical
visualization packages.
sym : str, optional
The default symbol for flier points. Enter an empty string
('') if you don't want to show fliers. If `None`, then the
fliers default to 'b+' If you want more control use the
flierprops kwarg.
vert : bool, optional (True)
If `True` (default), makes the boxes vertical. If `False`,
everything is drawn horizontally.
whis : float, sequence, or string (default = 1.5)
As a float, determines the reach of the whiskers to the beyond the
first and third quartiles. In other words, where IQR is the
interquartile range (`Q3-Q1`), the upper whisker will extend to
last datum less than `Q3 + whis*IQR`). Similarly, the lower whisker
will extend to the first datum greater than `Q1 - whis*IQR`.
Beyond the whiskers, data
are considered outliers and are plotted as individual
points. Set this to an unreasonably high value to force the
whiskers to show the min and max values. Alternatively, set
this to an ascending sequence of percentile (e.g., [5, 95])
to set the whiskers at specific percentiles of the data.
Finally, ``whis`` can be the string ``'range'`` to force the
whiskers to the min and max of the data.
bootstrap : int, optional
Specifies whether to bootstrap the confidence intervals
around the median for notched boxplots. If ``bootstrap`` is
None, no bootstrapping is performed, and notches are
calculated using a Gaussian-based asymptotic approximation
(see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
Kendall and Stuart, 1967). Otherwise, bootstrap specifies
the number of times to bootstrap the median to determine its
95% confidence intervals. Values between 1000 and 10000 are
recommended.
usermedians : array-like, optional
An array or sequence whose first dimension (or length) is
compatible with ``x``. This overrides the medians computed
by matplotlib for each element of ``usermedians`` that is not
`None`. When an element of ``usermedians`` is None, the median
will be computed by matplotlib as normal.
conf_intervals : array-like, optional
Array or sequence whose first dimension (or length) is
compatible with ``x`` and whose second dimension is 2. When
the an element of ``conf_intervals`` is not None, the
notch locations computed by matplotlib are overridden
(provided ``notch`` is `True`). When an element of
``conf_intervals`` is `None`, the notches are computed by the
method specified by the other kwargs (e.g., ``bootstrap``).
positions : array-like, optional
Sets the positions of the boxes. The ticks and limits are
automatically set to match the positions. Defaults to
`range(1, N+1)` where N is the number of boxes to be drawn.
widths : scalar or array-like
Sets the width of each box either with a scalar or a
sequence. The default is 0.5, or ``0.15*(distance between
extreme positions)``, if that is smaller.
patch_artist : bool, optional (False)
If `False` produces boxes with the Line2D artist. Otherwise,
boxes and drawn with Patch artists.
labels : sequence, optional
Labels for each dataset. Length must be compatible with
dimensions of ``x``.
manage_xticks : bool, optional (True)
If the function should adjust the xlim and xtick locations.
autorange : bool, optional (False)
When `True` and the data are distributed such that the 25th and
75th percentiles are equal, ``whis`` is set to ``'range'`` such
that the whisker ends are at the minimum and maximum of the
data.
meanline : bool, optional (False)
If `True` (and ``showmeans`` is `True`), will try to render
the mean as a line spanning the full width of the box
according to ``meanprops`` (see below). Not recommended if
``shownotches`` is also True. Otherwise, means will be shown
as points.
zorder : scalar, optional (None)
Sets the zorder of the boxplot.
Other Parameters
----------------
showcaps : bool, optional (True)
Show the caps on the ends of whiskers.
showbox : bool, optional (True)
Show the central box.
showfliers : bool, optional (True)
Show the outliers beyond the caps.
showmeans : bool, optional (False)
Show the arithmetic means.
capprops : dict, optional (None)
Specifies the style of the caps.
boxprops : dict, optional (None)
Specifies the style of the box.
whiskerprops : dict, optional (None)
Specifies the style of the whiskers.
flierprops : dict, optional (None)
Specifies the style of the fliers.
medianprops : dict, optional (None)
Specifies the style of the median.
meanprops : dict, optional (None)
Specifies the style of the mean.
Returns
-------
result : dict
A dictionary mapping each component of the boxplot to a list
of the :class:`matplotlib.lines.Line2D` instances
created. That dictionary has the following keys (assuming
vertical boxplots):
- ``boxes``: the main body of the boxplot showing the
quartiles and the median's confidence intervals if
enabled.
- ``medians``: horizontal lines at the median of each box.
- ``whiskers``: the vertical lines extending to the most
extreme, non-outlier data points.
- ``caps``: the horizontal lines at the ends of the
whiskers.
- ``fliers``: points representing data that extend beyond
the whiskers (fliers).
- ``means``: points or lines representing the means.
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
# If defined in matplotlibrc, apply the value from rc file
# Overridden if argument is passed
if whis is None:
whis = rcParams['boxplot.whiskers']
if bootstrap is None:
bootstrap = rcParams['boxplot.bootstrap']
bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
labels=labels, autorange=autorange)
if notch is None:
notch = rcParams['boxplot.notch']
if vert is None:
vert = rcParams['boxplot.vertical']
if patch_artist is None:
patch_artist = rcParams['boxplot.patchartist']
if meanline is None:
meanline = rcParams['boxplot.meanline']
if showmeans is None:
showmeans = rcParams['boxplot.showmeans']
if showcaps is None:
showcaps = rcParams['boxplot.showcaps']
if showbox is None:
showbox = rcParams['boxplot.showbox']
if showfliers is None:
showfliers = rcParams['boxplot.showfliers']
def _update_dict(dictionary, rc_name, properties):
""" Loads properties in the dictionary from rc file if not already
in the dictionary"""
rc_str = 'boxplot.{0}.{1}'
if dictionary is None:
dictionary = dict()
for prop_dict in properties:
dictionary.setdefault(prop_dict,
rcParams[rc_str.format(rc_name, prop_dict)])
return dictionary
# Common property dictionnaries loading from rc
flier_props = ['color', 'marker', 'markerfacecolor', 'markeredgecolor',
'markersize', 'linestyle', 'linewidth']
default_props = ['color', 'linewidth', 'linestyle']
boxprops = _update_dict(boxprops, 'boxprops', default_props)
whiskerprops = _update_dict(whiskerprops, 'whiskerprops',
default_props)
capprops = _update_dict(capprops, 'capprops', default_props)
medianprops = _update_dict(medianprops, 'medianprops', default_props)
meanprops = _update_dict(meanprops, 'meanprops', default_props)
flierprops = _update_dict(flierprops, 'flierprops', flier_props)
if patch_artist:
boxprops['linestyle'] = 'solid'
boxprops['edgecolor'] = boxprops.pop('color')
# if non-default sym value, put it into the flier dictionary
# the logic for providing the default symbol ('b+') now lives
# in bxp in the initial value of final_flierprops
# handle all of the `sym` related logic here so we only have to pass
# on the flierprops dict.
if sym is not None:
# no-flier case, which should really be done with
# 'showfliers=False' but none-the-less deal with it to keep back
# compatibility
if sym == '':
# blow away existing dict and make one for invisible markers
flierprops = dict(linestyle='none', marker='', color='none')
# turn the fliers off just to be safe
showfliers = False
# now process the symbol string
else:
# process the symbol string
# discarded linestyle
_, marker, color = _process_plot_format(sym)
# if we have a marker, use it
if marker is not None:
flierprops['marker'] = marker
# if we have a color, use it
if color is not None:
# assume that if color is passed in the user want
# filled symbol, if the users want more control use
# flierprops
flierprops['color'] = color
flierprops['markerfacecolor'] = color
flierprops['markeredgecolor'] = color
# replace medians if necessary:
if usermedians is not None:
if (len(np.ravel(usermedians)) != len(bxpstats) or
np.shape(usermedians)[0] != len(bxpstats)):
raise ValueError('usermedians length not compatible with x')
else:
# reassign medians as necessary
for stats, med in zip(bxpstats, usermedians):
if med is not None:
stats['med'] = med
if conf_intervals is not None:
if np.shape(conf_intervals)[0] != len(bxpstats):
err_mess = 'conf_intervals length not compatible with x'
raise ValueError(err_mess)
else:
for stats, ci in zip(bxpstats, conf_intervals):
if ci is not None:
if len(ci) != 2:
raise ValueError('each confidence interval must '
'have two values')
else:
if ci[0] is not None:
stats['cilo'] = ci[0]
if ci[1] is not None:
stats['cihi'] = ci[1]
artists = self.bxp(bxpstats, positions=positions, widths=widths,
vert=vert, patch_artist=patch_artist,
shownotches=notch, showmeans=showmeans,
showcaps=showcaps, showbox=showbox,
boxprops=boxprops, flierprops=flierprops,
medianprops=medianprops, meanprops=meanprops,
meanline=meanline, showfliers=showfliers,
capprops=capprops, whiskerprops=whiskerprops,
manage_xticks=manage_xticks, zorder=zorder)
return artists
[docs] def bxp(self, bxpstats, positions=None, widths=None, vert=True,
patch_artist=False, shownotches=False, showmeans=False,
showcaps=True, showbox=True, showfliers=True,
boxprops=None, whiskerprops=None, flierprops=None,
medianprops=None, capprops=None, meanprops=None,
meanline=False, manage_xticks=True, zorder=None):
"""
Drawing function for box and whisker plots.
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
Parameters
----------
bxpstats : list of dicts
A list of dictionaries containing stats for each boxplot.
Required keys are:
- ``med``: The median (scalar float).
- ``q1``: The first quartile (25th percentile) (scalar
float).
- ``q3``: The third quartile (75th percentile) (scalar
float).
- ``whislo``: Lower bound of the lower whisker (scalar
float).
- ``whishi``: Upper bound of the upper whisker (scalar
float).
Optional keys are:
- ``mean``: The mean (scalar float). Needed if
``showmeans=True``.
- ``fliers``: Data beyond the whiskers (sequence of floats).
Needed if ``showfliers=True``.
- ``cilo`` & ``cihi``: Lower and upper confidence intervals
about the median. Needed if ``shownotches=True``.
- ``label``: Name of the dataset (string). If available,
this will be used a tick label for the boxplot
positions : array-like, default = [1, 2, ..., n]
Sets the positions of the boxes. The ticks and limits
are automatically set to match the positions.
widths : array-like, default = None
Either a scalar or a vector and sets the width of each
box. The default is ``0.15*(distance between extreme
positions)``, clipped to no less than 0.15 and no more than
0.5.
vert : bool, default = False
If `True` (default), makes the boxes vertical. If `False`,
makes horizontal boxes.
patch_artist : bool, default = False
If `False` produces boxes with the
`~matplotlib.lines.Line2D` artist. If `True` produces boxes
with the `~matplotlib.patches.Patch` artist.
shownotches : bool, default = False
If `False` (default), produces a rectangular box plot.
If `True`, will produce a notched box plot
showmeans : bool, default = False
If `True`, will toggle on the rendering of the means
showcaps : bool, default = True
If `True`, will toggle on the rendering of the caps
showbox : bool, default = True
If `True`, will toggle on the rendering of the box
showfliers : bool, default = True
If `True`, will toggle on the rendering of the fliers
boxprops : dict or None (default)
If provided, will set the plotting style of the boxes
whiskerprops : dict or None (default)
If provided, will set the plotting style of the whiskers
capprops : dict or None (default)
If provided, will set the plotting style of the caps
flierprops : dict or None (default)
If provided will set the plotting style of the fliers
medianprops : dict or None (default)
If provided, will set the plotting style of the medians
meanprops : dict or None (default)
If provided, will set the plotting style of the means
meanline : bool, default = False
If `True` (and *showmeans* is `True`), will try to render the mean
as a line spanning the full width of the box according to
*meanprops*. Not recommended if *shownotches* is also True.
Otherwise, means will be shown as points.
manage_xticks : bool, default = True
If the function should adjust the xlim and xtick locations.
zorder : scalar, default = None
The zorder of the resulting boxplot
Returns
-------
result : dict
A dictionary mapping each component of the boxplot to a list
of the :class:`matplotlib.lines.Line2D` instances
created. That dictionary has the following keys (assuming
vertical boxplots):
- ``boxes``: the main body of the boxplot showing the
quartiles and the median's confidence intervals if
enabled.
- ``medians``: horizontal lines at the median of each box.
- ``whiskers``: the vertical lines extending to the most
extreme, non-outlier data points.
- ``caps``: the horizontal lines at the ends of the
whiskers.
- ``fliers``: points representing data that extend beyond
the whiskers (fliers).
- ``means``: points or lines representing the means.
Examples
--------
.. plot:: gallery/statistics/bxp.py
"""
# lists of artists to be output
whiskers = []
caps = []
boxes = []
medians = []
means = []
fliers = []
# empty list of xticklabels
datalabels = []
# Use default zorder if none specified
if zorder is None:
zorder = mlines.Line2D.zorder
zdelta = 0.1
# box properties
if patch_artist:
final_boxprops = dict(
linestyle=rcParams['boxplot.boxprops.linestyle'],
edgecolor=rcParams['boxplot.boxprops.color'],
facecolor=rcParams['patch.facecolor'],
linewidth=rcParams['boxplot.boxprops.linewidth']
)
if rcParams['_internal.classic_mode']:
final_boxprops['facecolor'] = 'white'
else:
final_boxprops = dict(
linestyle=rcParams['boxplot.boxprops.linestyle'],
color=rcParams['boxplot.boxprops.color'],
)
final_boxprops['zorder'] = zorder
if boxprops is not None:
final_boxprops.update(boxprops)
# other (cap, whisker) properties
final_whiskerprops = dict(
linestyle=rcParams['boxplot.whiskerprops.linestyle'],
linewidth=rcParams['boxplot.whiskerprops.linewidth'],
color=rcParams['boxplot.whiskerprops.color'],
)
final_capprops = dict(
linestyle=rcParams['boxplot.capprops.linestyle'],
linewidth=rcParams['boxplot.capprops.linewidth'],
color=rcParams['boxplot.capprops.color'],
)
final_capprops['zorder'] = zorder
if capprops is not None:
final_capprops.update(capprops)
final_whiskerprops['zorder'] = zorder
if whiskerprops is not None:
final_whiskerprops.update(whiskerprops)
# set up the default flier properties
final_flierprops = dict(
linestyle=rcParams['boxplot.flierprops.linestyle'],
linewidth=rcParams['boxplot.flierprops.linewidth'],
color=rcParams['boxplot.flierprops.color'],
marker=rcParams['boxplot.flierprops.marker'],
markerfacecolor=rcParams['boxplot.flierprops.markerfacecolor'],
markeredgecolor=rcParams['boxplot.flierprops.markeredgecolor'],
markersize=rcParams['boxplot.flierprops.markersize'],
)
final_flierprops['zorder'] = zorder
# flier (outlier) properties
if flierprops is not None:
final_flierprops.update(flierprops)
# median line properties
final_medianprops = dict(
linestyle=rcParams['boxplot.medianprops.linestyle'],
linewidth=rcParams['boxplot.medianprops.linewidth'],
color=rcParams['boxplot.medianprops.color'],
)
final_medianprops['zorder'] = zorder + zdelta
if medianprops is not None:
final_medianprops.update(medianprops)
# mean (line or point) properties
if meanline:
final_meanprops = dict(
linestyle=rcParams['boxplot.meanprops.linestyle'],
linewidth=rcParams['boxplot.meanprops.linewidth'],
color=rcParams['boxplot.meanprops.color'],
)
else:
final_meanprops = dict(
linestyle='',
marker=rcParams['boxplot.meanprops.marker'],
markerfacecolor=rcParams['boxplot.meanprops.markerfacecolor'],
markeredgecolor=rcParams['boxplot.meanprops.markeredgecolor'],
markersize=rcParams['boxplot.meanprops.markersize'],
)
final_meanprops['zorder'] = zorder + zdelta
if meanprops is not None:
final_meanprops.update(meanprops)
def to_vc(xs, ys):
# convert arguments to verts and codes, append (0, 0) (ignored).
verts = np.append(np.column_stack([xs, ys]), [(0, 0)], 0)
codes = ([mpath.Path.MOVETO]
+ [mpath.Path.LINETO] * (len(verts) - 2)
+ [mpath.Path.CLOSEPOLY])
return verts, codes
def patch_list(xs, ys, **kwargs):
verts, codes = to_vc(xs, ys)
path = mpath.Path(verts, codes)
patch = mpatches.PathPatch(path, **kwargs)
self.add_artist(patch)
return [patch]
# vertical or horizontal plot?
if vert:
def doplot(*args, **kwargs):
return self.plot(*args, **kwargs)
def dopatch(xs, ys, **kwargs):
return patch_list(xs, ys, **kwargs)
else:
def doplot(*args, **kwargs):
shuffled = []
for i in xrange(0, len(args), 2):
shuffled.extend([args[i + 1], args[i]])
return self.plot(*shuffled, **kwargs)
def dopatch(xs, ys, **kwargs):
xs, ys = ys, xs # flip X, Y
return patch_list(xs, ys, **kwargs)
# input validation
N = len(bxpstats)
datashape_message = ("List of boxplot statistics and `{0}` "
"values must have same the length")
# check position
if positions is None:
positions = list(xrange(1, N + 1))
elif len(positions) != N:
raise ValueError(datashape_message.format("positions"))
# width
if widths is None:
widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
elif np.isscalar(widths):
widths = [widths] * N
elif len(widths) != N:
raise ValueError(datashape_message.format("widths"))
# check and save the `hold` state of the current axes
if not self._hold:
self.cla()
holdStatus = self._hold
for pos, width, stats in zip(positions, widths, bxpstats):
# try to find a new label
datalabels.append(stats.get('label', pos))
# whisker coords
whisker_x = np.ones(2) * pos
whiskerlo_y = np.array([stats['q1'], stats['whislo']])
whiskerhi_y = np.array([stats['q3'], stats['whishi']])
# cap coords
cap_left = pos - width * 0.25
cap_right = pos + width * 0.25
cap_x = np.array([cap_left, cap_right])
cap_lo = np.ones(2) * stats['whislo']
cap_hi = np.ones(2) * stats['whishi']
# box and median coords
box_left = pos - width * 0.5
box_right = pos + width * 0.5
med_y = [stats['med'], stats['med']]
# notched boxes
if shownotches:
box_x = [box_left, box_right, box_right, cap_right, box_right,
box_right, box_left, box_left, cap_left, box_left,
box_left]
box_y = [stats['q1'], stats['q1'], stats['cilo'],
stats['med'], stats['cihi'], stats['q3'],
stats['q3'], stats['cihi'], stats['med'],
stats['cilo'], stats['q1']]
med_x = cap_x
# plain boxes
else:
box_x = [box_left, box_right, box_right, box_left, box_left]
box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
stats['q1']]
med_x = [box_left, box_right]
# maybe draw the box:
if showbox:
if patch_artist:
boxes.extend(dopatch(box_x, box_y, **final_boxprops))
else:
boxes.extend(doplot(box_x, box_y, **final_boxprops))
# draw the whiskers
whiskers.extend(doplot(
whisker_x, whiskerlo_y, **final_whiskerprops
))
whiskers.extend(doplot(
whisker_x, whiskerhi_y, **final_whiskerprops
))
# maybe draw the caps:
if showcaps:
caps.extend(doplot(cap_x, cap_lo, **final_capprops))
caps.extend(doplot(cap_x, cap_hi, **final_capprops))
# draw the medians
medians.extend(doplot(med_x, med_y, **final_medianprops))
# maybe draw the means
if showmeans:
if meanline:
means.extend(doplot(
[box_left, box_right], [stats['mean'], stats['mean']],
**final_meanprops
))
else:
means.extend(doplot(
[pos], [stats['mean']], **final_meanprops
))
# maybe draw the fliers
if showfliers:
# fliers coords
flier_x = np.ones(len(stats['fliers'])) * pos
flier_y = stats['fliers']
fliers.extend(doplot(
flier_x, flier_y, **final_flierprops
))
# fix our axes/ticks up a little
if vert:
setticks = self.set_xticks
setlim = self.set_xlim
setlabels = self.set_xticklabels
else:
setticks = self.set_yticks
setlim = self.set_ylim
setlabels = self.set_yticklabels
if manage_xticks:
newlimits = min(positions) - 0.5, max(positions) + 0.5
setlim(newlimits)
setticks(positions)
setlabels(datalabels)
# reset hold status
self._hold = holdStatus
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
medians=medians, fliers=fliers, means=means)
[docs] @_preprocess_data(replace_names=["x", "y", "s", "linewidths",
"edgecolors", "c", "facecolor",
"facecolors", "color"],
label_namer="y")
def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, edgecolors=None,
**kwargs):
"""
A scatter plot of *y* vs *x* with varying marker size and/or color.
Parameters
----------
x, y : array_like, shape (n, )
The data positions.
s : scalar or array_like, shape (n, ), optional
The marker size in points**2.
Default is ``rcParams['lines.markersize'] ** 2``.
c : color, sequence, or sequence of color, optional, default: 'b'
The marker color. Possible values:
- A single color format string.
- A sequence of color specifications of length n.
- A sequence of n numbers to be mapped to colors using *cmap* and
*norm*.
- A 2-D array in which the rows are RGB or RGBA.
Note that *c* should not be a single numeric RGB or RGBA sequence
because that is indistinguishable from an array of values to be
colormapped. If you want to specify the same RGB or RGBA value for
all points, use a 2-D array with a single row.
marker : `~matplotlib.markers.MarkerStyle`, optional, default: 'o'
The marker style. *marker* can be either an instance of the class
or the text shorthand for a particular marker.
See `~matplotlib.markers` for more information marker styles.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
A `.Colormap` instance or registered colormap name. *cmap* is only
used if *c* is an array of floats. If ``None``, defaults to rc
``image.cmap``.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `.Normalize` instance is used to scale luminance data to 0, 1.
*norm* is only used if *c* is an array of floats. If *None*, use
the default `.colors.Normalize`.
vmin, vmax : scalar, optional, default: None
*vmin* and *vmax* are used in conjunction with *norm* to normalize
luminance data. If None, the respective min and max of the color
array is used. *vmin* and *vmax* are ignored if you pass a *norm*
instance.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
linewidths : scalar or array_like, optional, default: None
The linewidth of the marker edges. Note: The default *edgecolors*
is 'face'. You may want to change this as well.
If *None*, defaults to rcParams ``lines.linewidth``.
verts : sequence of (x, y), optional
If *marker* is *None*, these vertices will be used to construct
the marker. The center of the marker is located at (0, 0) in
normalized units. The overall marker is rescaled by *s*.
edgecolors : color or sequence of color, optional, default: 'face'
The edge color of the marker. Possible values:
- 'face': The edge color will always be the same as the face color.
- 'none': No patch boundary will be drawn.
- A matplotib color.
For non-filled markers, the *edgecolors* kwarg is ignored and
forced to 'face' internally.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.Collection` properties
See Also
--------
plot : To plot scatter plots when markers are identical in size and
color.
Notes
-----
* The `.plot` function will be faster for scatterplots where markers
don't vary in size or color.
* Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
case all masks will be combined and only unmasked points will be
plotted.
* Fundamentally, scatter works with 1-D arrays; *x*, *y*, *s*, and *c*
may be input as 2-D arrays, but within scatter they will be
flattened. The exception is *c*, which will be flattened only if its
size matches the size of *x* and *y*.
"""
if not self._hold:
self.cla()
# Process **kwargs to handle aliases, conflicts with explicit kwargs:
facecolors = None
edgecolors = kwargs.pop('edgecolor', edgecolors)
fc = kwargs.pop('facecolors', None)
fc = kwargs.pop('facecolor', fc)
if fc is not None:
facecolors = fc
co = kwargs.pop('color', None)
if co is not None:
try:
mcolors.to_rgba_array(co)
except ValueError:
raise ValueError("'color' kwarg must be an mpl color"
" spec or sequence of color specs.\n"
"For a sequence of values to be"
" color-mapped, use the 'c' kwarg instead.")
if edgecolors is None:
edgecolors = co
if facecolors is None:
facecolors = co
if c is not None:
raise ValueError("Supply a 'c' kwarg or a 'color' kwarg"
" but not both; they differ but"
" their functionalities overlap.")
if c is None:
if facecolors is not None:
c = facecolors
else:
if rcParams['_internal.classic_mode']:
c = 'b' # The original default
else:
c = self._get_patches_for_fill.get_next_color()
c_none = True
else:
c_none = False
if edgecolors is None and not rcParams['_internal.classic_mode']:
edgecolors = 'face'
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
# np.ma.ravel yields an ndarray, not a masked array,
# unless its argument is a masked array.
xy_shape = (np.shape(x), np.shape(y))
x = np.ma.ravel(x)
y = np.ma.ravel(y)
if x.size != y.size:
raise ValueError("x and y must be the same size")
if s is None:
if rcParams['_internal.classic_mode']:
s = 20
else:
s = rcParams['lines.markersize'] ** 2.0
s = np.ma.ravel(s) # This doesn't have to match x, y in size.
# After this block, c_array will be None unless
# c is an array for mapping. The potential ambiguity
# with a sequence of 3 or 4 numbers is resolved in
# favor of mapping, not rgb or rgba.
if c_none or co is not None:
c_array = None
else:
try:
c_array = np.asanyarray(c, dtype=float)
if c_array.shape in xy_shape:
c = np.ma.ravel(c_array)
else:
# Wrong size; it must not be intended for mapping.
c_array = None
except ValueError:
# Failed to make a floating-point array; c must be color specs.
c_array = None
if c_array is None:
try:
# must be acceptable as PathCollection facecolors
colors = mcolors.to_rgba_array(c)
except ValueError:
# c not acceptable as PathCollection facecolor
raise ValueError("c of shape {} not acceptable as a color "
"sequence for x with size {}, y with size {}"
.format(c.shape, x.size, y.size))
else:
colors = None # use cmap, norm after collection is created
# `delete_masked_points` only modifies arguments of the same length as
# `x`.
x, y, s, c, colors, edgecolors, linewidths =\
cbook.delete_masked_points(
x, y, s, c, colors, edgecolors, linewidths)
scales = s # Renamed for readability below.
# to be API compatible
if marker is None and verts is not None:
marker = (verts, 0)
verts = None
# load default marker from rcParams
if marker is None:
marker = rcParams['scatter.marker']
if isinstance(marker, mmarkers.MarkerStyle):
marker_obj = marker
else:
marker_obj = mmarkers.MarkerStyle(marker)
path = marker_obj.get_path().transformed(
marker_obj.get_transform())
if not marker_obj.is_filled():
edgecolors = 'face'
linewidths = rcParams['lines.linewidth']
offsets = np.column_stack([x, y])
collection = mcoll.PathCollection(
(path,), scales,
facecolors=colors,
edgecolors=edgecolors,
linewidths=linewidths,
offsets=offsets,
transOffset=kwargs.pop('transform', self.transData),
alpha=alpha
)
collection.set_transform(mtransforms.IdentityTransform())
collection.update(kwargs)
if colors is None:
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
collection.set_array(np.asarray(c))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
# Classic mode only:
# ensure there are margins to allow for the
# finite size of the symbols. In v2.x, margins
# are present by default, so we disable this
# scatter-specific override.
if rcParams['_internal.classic_mode']:
if self._xmargin < 0.05 and x.size > 0:
self.set_xmargin(0.05)
if self._ymargin < 0.05 and x.size > 0:
self.set_ymargin(0.05)
self.add_collection(collection)
self.autoscale_view()
return collection
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def hexbin(self, x, y, C=None, gridsize=100, bins=None,
xscale='linear', yscale='linear', extent=None,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors='face',
reduce_C_function=np.mean, mincnt=None, marginals=False,
**kwargs):
"""
Make a hexagonal binning plot.
Make a hexagonal binning plot of *x* versus *y*, where *x*,
*y* are 1-D sequences of the same length, *N*. If *C* is *None*
(the default), this is a histogram of the number of occurrences
of the observations at (x[i],y[i]).
If *C* is specified, it specifies values at the coordinate
(x[i],y[i]). These values are accumulated for each hexagonal
bin and then reduced according to *reduce_C_function*, which
defaults to numpy's mean function (np.mean). (If *C* is
specified, it must also be a 1-D sequence of the same length
as *x* and *y*.)
Parameters
----------
x, y : array or masked array
C : array or masked array, optional, default is *None*
gridsize : int or (int, int), optional, default is 100
The number of hexagons in the *x*-direction, default is
100. The corresponding number of hexagons in the
*y*-direction is chosen such that the hexagons are
approximately regular. Alternatively, gridsize can be a
tuple with two elements specifying the number of hexagons
in the *x*-direction and the *y*-direction.
bins : {'log'} or int or sequence, optional, default is *None*
If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
If 'log', use a logarithmic scale for the color
map. Internally, :math:`log_{10}(i+1)` is used to
determine the hexagon color.
If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of
the bins to be used.
xscale : {'linear', 'log'}, optional, default is 'linear'
Use a linear or log10 scale on the horizontal axis.
yscale : {'linear', 'log'}, optional, default is 'linear'
Use a linear or log10 scale on the vertical axis.
mincnt : int > 0, optional, default is *None*
If not *None*, only display cells with more than *mincnt*
number of points in the cell
marginals : bool, optional, default is *False*
if marginals is *True*, plot the marginal density as
colormapped rectagles along the bottom of the x-axis and
left of the y-axis
extent : scalar, optional, default is *None*
The limits of the bins. The default assigns the limits
based on *gridsize*, *x*, *y*, *xscale* and *yscale*.
If *xscale* or *yscale* is set to 'log', the limits are
expected to be the exponent for a power of 10. E.g. for
x-limits of 1 and 50 in 'linear' scale and y-limits
of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
Order of scalars is (left, right, bottom, top).
Other Parameters
----------------
cmap : object, optional, default is *None*
a :class:`matplotlib.colors.Colormap` instance. If *None*,
defaults to rc ``image.cmap``.
norm : object, optional, default is *None*
:class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1.
vmin, vmax : scalar, optional, default is *None*
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If *None*, the min and max of the
color array *C* are used. Note if you pass a norm instance
your settings for *vmin* and *vmax* will be ignored.
alpha : scalar between 0 and 1, optional, default is *None*
the alpha value for the patches
linewidths : scalar, optional, default is *None*
If *None*, defaults to 1.0.
edgecolors : {'face', 'none', *None*} or color, optional
If 'face' (the default), draws the edges in the same color as the
fill color.
If 'none', no edge is drawn; this can sometimes lead to unsightly
unpainted pixels between the hexagons.
If *None*, draws outlines in the default color.
If a matplotlib color arg, draws outlines in the specified color.
Returns
-------
object
a :class:`~matplotlib.collections.PolyCollection` instance; use
:meth:`~matplotlib.collections.PolyCollection.get_array` on
this :class:`~matplotlib.collections.PolyCollection` to get
the counts in each hexagon.
If *marginals* is *True*, horizontal
bar and vertical bar (both PolyCollections) will be attached
to the return collection as attributes *hbar* and *vbar*.
Notes
-----
The standard descriptions of all the
:class:`~matplotlib.collections.Collection` parameters:
%(Collection)s
"""
if not self._hold:
self.cla()
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, C = cbook.delete_masked_points(x, y, C)
# Set the size of the hexagon grid
if iterable(gridsize):
nx, ny = gridsize
else:
nx = gridsize
ny = int(nx / math.sqrt(3))
# Count the number of data in each hexagon
x = np.array(x, float)
y = np.array(y, float)
if xscale == 'log':
if np.any(x <= 0.0):
raise ValueError("x contains non-positive values, so can not"
" be log-scaled")
x = np.log10(x)
if yscale == 'log':
if np.any(y <= 0.0):
raise ValueError("y contains non-positive values, so can not"
" be log-scaled")
y = np.log10(y)
if extent is not None:
xmin, xmax, ymin, ymax = extent
else:
xmin, xmax = (np.min(x), np.max(x)) if len(x) else (0, 1)
ymin, ymax = (np.min(y), np.max(y)) if len(y) else (0, 1)
# to avoid issues with singular data, expand the min/max pairs
xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)
# In the x-direction, the hexagons exactly cover the region from
# xmin to xmax. Need some padding to avoid roundoff errors.
padding = 1.e-9 * (xmax - xmin)
xmin -= padding
xmax += padding
sx = (xmax - xmin) / nx
sy = (ymax - ymin) / ny
if marginals:
xorig = x.copy()
yorig = y.copy()
x = (x - xmin) / sx
y = (y - ymin) / sy
ix1 = np.round(x).astype(int)
iy1 = np.round(y).astype(int)
ix2 = np.floor(x).astype(int)
iy2 = np.floor(y).astype(int)
nx1 = nx + 1
ny1 = ny + 1
nx2 = nx
ny2 = ny
n = nx1 * ny1 + nx2 * ny2
d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
bdist = (d1 < d2)
if C is None:
lattice1 = np.zeros((nx1, ny1))
lattice2 = np.zeros((nx2, ny2))
cond1 = (0 <= ix1) * (ix1 < nx1) * (0 <= iy1) * (iy1 < ny1)
cond2 = (0 <= ix2) * (ix2 < nx2) * (0 <= iy2) * (iy2 < ny2)
cond1 *= bdist
cond2 *= np.logical_not(bdist)
ix1, iy1 = ix1[cond1], iy1[cond1]
ix2, iy2 = ix2[cond2], iy2[cond2]
for ix, iy in zip(ix1, iy1):
lattice1[ix, iy] += 1
for ix, iy in zip(ix2, iy2):
lattice2[ix, iy] += 1
# threshold
if mincnt is not None:
lattice1[lattice1 < mincnt] = np.nan
lattice2[lattice2 < mincnt] = np.nan
accum = np.hstack((lattice1.ravel(),
lattice2.ravel()))
good_idxs = ~np.isnan(accum)
else:
if mincnt is None:
mincnt = 0
# create accumulation arrays
lattice1 = np.empty((nx1, ny1), dtype=object)
for i in xrange(nx1):
for j in xrange(ny1):
lattice1[i, j] = []
lattice2 = np.empty((nx2, ny2), dtype=object)
for i in xrange(nx2):
for j in xrange(ny2):
lattice2[i, j] = []
for i in xrange(len(x)):
if bdist[i]:
if 0 <= ix1[i] < nx1 and 0 <= iy1[i] < ny1:
lattice1[ix1[i], iy1[i]].append(C[i])
else:
if 0 <= ix2[i] < nx2 and 0 <= iy2[i] < ny2:
lattice2[ix2[i], iy2[i]].append(C[i])
for i in xrange(nx1):
for j in xrange(ny1):
vals = lattice1[i, j]
if len(vals) > mincnt:
lattice1[i, j] = reduce_C_function(vals)
else:
lattice1[i, j] = np.nan
for i in xrange(nx2):
for j in xrange(ny2):
vals = lattice2[i, j]
if len(vals) > mincnt:
lattice2[i, j] = reduce_C_function(vals)
else:
lattice2[i, j] = np.nan
accum = np.hstack((lattice1.astype(float).ravel(),
lattice2.astype(float).ravel()))
good_idxs = ~np.isnan(accum)
offsets = np.zeros((n, 2), float)
offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
offsets[:, 0] *= sx
offsets[:, 1] *= sy
offsets[:, 0] += xmin
offsets[:, 1] += ymin
# remove accumulation bins with no data
offsets = offsets[good_idxs, :]
accum = accum[good_idxs]
polygon = np.zeros((6, 2), float)
polygon[:, 0] = sx * np.array([0.5, 0.5, 0.0, -0.5, -0.5, 0.0])
polygon[:, 1] = sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0
if linewidths is None:
linewidths = [1.0]
if xscale == 'log' or yscale == 'log':
polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
if xscale == 'log':
polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
xmin = 10.0 ** xmin
xmax = 10.0 ** xmax
self.set_xscale(xscale)
if yscale == 'log':
polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
ymin = 10.0 ** ymin
ymax = 10.0 ** ymax
self.set_yscale(yscale)
collection = mcoll.PolyCollection(
polygons,
edgecolors=edgecolors,
linewidths=linewidths,
)
else:
collection = mcoll.PolyCollection(
[polygon],
edgecolors=edgecolors,
linewidths=linewidths,
offsets=offsets,
transOffset=mtransforms.IdentityTransform(),
offset_position="data"
)
if isinstance(norm, mcolors.LogNorm):
if (accum == 0).any():
# make sure we have not zeros
accum += 1
# autoscale the norm with curren accum values if it hasn't
# been set
if norm is not None:
if norm.vmin is None and norm.vmax is None:
norm.autoscale(accum)
# Transform accum if needed
if bins == 'log':
accum = np.log10(accum + 1)
elif bins is not None:
if not iterable(bins):
minimum, maximum = min(accum), max(accum)
bins -= 1 # one less edge than bins
bins = minimum + (maximum - minimum) * np.arange(bins) / bins
bins = np.sort(bins)
accum = bins.searchsorted(accum)
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
collection.set_array(accum)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_alpha(alpha)
collection.update(kwargs)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
corners = ((xmin, ymin), (xmax, ymax))
self.update_datalim(corners)
collection.sticky_edges.x[:] = [xmin, xmax]
collection.sticky_edges.y[:] = [ymin, ymax]
self.autoscale_view(tight=True)
# add the collection last
self.add_collection(collection, autolim=False)
if not marginals:
return collection
if C is None:
C = np.ones(len(x))
def coarse_bin(x, y, coarse):
ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
mus = np.zeros(len(coarse))
for i in range(len(coarse)):
yi = y[ind == i]
if len(yi) > 0:
mu = reduce_C_function(yi)
else:
mu = np.nan
mus[i] = mu
return mus
coarse = np.linspace(xmin, xmax, gridsize)
xcoarse = coarse_bin(xorig, C, coarse)
valid = ~np.isnan(xcoarse)
verts, values = [], []
for i, val in enumerate(xcoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(thismin, 0),
(thismin, 0.05),
(thismax, 0.05),
(thismax, 0)])
values.append(val)
values = np.array(values)
trans = self.get_xaxis_transform(which='grid')
hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
hbar.set_array(values)
hbar.set_cmap(cmap)
hbar.set_norm(norm)
hbar.set_alpha(alpha)
hbar.update(kwargs)
self.add_collection(hbar, autolim=False)
coarse = np.linspace(ymin, ymax, gridsize)
ycoarse = coarse_bin(yorig, C, coarse)
valid = ~np.isnan(ycoarse)
verts, values = [], []
for i, val in enumerate(ycoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(0, thismin), (0.0, thismax),
(0.05, thismax), (0.05, thismin)])
values.append(val)
values = np.array(values)
trans = self.get_yaxis_transform(which='grid')
vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
vbar.set_array(values)
vbar.set_cmap(cmap)
vbar.set_norm(norm)
vbar.set_alpha(alpha)
vbar.update(kwargs)
self.add_collection(vbar, autolim=False)
collection.hbar = hbar
collection.vbar = vbar
def on_changed(collection):
hbar.set_cmap(collection.get_cmap())
hbar.set_clim(collection.get_clim())
vbar.set_cmap(collection.get_cmap())
vbar.set_clim(collection.get_clim())
collection.callbacksSM.connect('changed', on_changed)
return collection
[docs] @docstring.dedent_interpd
def arrow(self, x, y, dx, dy, **kwargs):
"""
Add an arrow to the axes.
This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.
Parameters
----------
x, y : float
The x/y-coordinate of the arrow base.
dx, dy : float
The length of the arrow along x/y-direction.
Returns
-------
arrow : `.FancyArrow`
The created `.FancyArrow` object.
Other Parameters
----------------
**kwargs
Optional kwargs (inherited from `.FancyArrow` patch) control the
arrow construction and properties:
%(FancyArrow)s
Notes
-----
The resulting arrow is affected by the axes aspect ratio and limits.
This may produce an arrow whose head is not square with its stem. To
create an arrow whose head is square with its stem,
use :meth:`annotate` for example:
>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
... arrowprops=dict(arrowstyle="->"))
"""
# Strip away units for the underlying patch since units
# do not make sense to most patch-like code
x = self.convert_xunits(x)
y = self.convert_yunits(y)
dx = self.convert_xunits(dx)
dy = self.convert_yunits(dy)
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
self.add_artist(a)
return a
[docs] def quiverkey(self, *args, **kw):
qk = mquiver.QuiverKey(*args, **kw)
self.add_artist(qk)
return qk
quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc
# Handle units for x and y, if they've been passed
def _quiver_units(self, args, kw):
if len(args) > 3:
x, y = args[0:2]
self._process_unit_info(xdata=x, ydata=y, kwargs=kw)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
return (x, y) + args[2:]
return args
# args can by a combination if X, Y, U, V, C and all should be replaced
[docs] @_preprocess_data(replace_all_args=True, label_namer=None)
def quiver(self, *args, **kw):
if not self._hold:
self.cla()
# Make sure units are handled for x and y values
args = self._quiver_units(args, kw)
q = mquiver.Quiver(self, *args, **kw)
self.add_collection(q, autolim=True)
self.autoscale_view()
return q
quiver.__doc__ = mquiver.Quiver.quiver_doc
# args can by either Y or y1,y2,... and all should be replaced
[docs] @_preprocess_data(replace_all_args=True, label_namer=None)
def stackplot(self, x, *args, **kwargs):
return mstack.stackplot(self, x, *args, **kwargs)
stackplot.__doc__ = mstack.stackplot.__doc__
[docs] @_preprocess_data(replace_names=["x", "y", "u", "v", "start_points"],
label_namer=None)
def streamplot(self, x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle='-|>',
minlength=0.1, transform=None, zorder=None,
start_points=None, maxlength=4.0,
integration_direction='both'):
if not self._hold:
self.cla()
stream_container = mstream.streamplot(
self, x, y, u, v,
density=density,
linewidth=linewidth,
color=color,
cmap=cmap,
norm=norm,
arrowsize=arrowsize,
arrowstyle=arrowstyle,
minlength=minlength,
start_points=start_points,
transform=transform,
zorder=zorder,
maxlength=maxlength,
integration_direction=integration_direction)
return stream_container
streamplot.__doc__ = mstream.streamplot.__doc__
# args can be some combination of X, Y, U, V, C and all should be replaced
[docs] @_preprocess_data(replace_all_args=True, label_namer=None)
@docstring.dedent_interpd
def barbs(self, *args, **kw):
"""
%(barbs_doc)s
"""
if not self._hold:
self.cla()
# Make sure units are handled for x and y values
args = self._quiver_units(args, kw)
b = mquiver.Barbs(self, *args, **kw)
self.add_collection(b, autolim=True)
self.autoscale_view()
return b
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer=None,
positional_parameter_names=["x", "y", "c"])
def fill(self, *args, **kwargs):
"""
Plot filled polygons.
Parameters
----------
args : sequence of x, y, [color]
Each polygon is defined by the lists of *x* and *y* positions of
its nodes, optionally followed by by a *color* specifier. See
:mod:`matplotlib.colors` for supported color specifiers. The
standard color cycle is used for polygons without a color
specifier.
You can plot multiple polygons by providing multiple *x*, *y*,
*[color]* groups.
For example, each of the following is legal::
ax.fill(x, y) # a polygon with default color
ax.fill(x, y, "b") # a blue polygon
ax.fill(x, y, x2, y2) # two polygons
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon
Returns
-------
a list of :class:`~matplotlib.patches.Polygon`
Other Parameters
----------------
**kwargs : :class:`~matplotlib.patches.Polygon` properties
Notes
-----
Use :meth:`fill_between` if you would like to fill the region between
two curves.
"""
if not self._hold:
self.cla()
kwargs = cbook.normalize_kwargs(kwargs, _alias_map)
patches = []
for poly in self._get_patches_for_fill(*args, **kwargs):
self.add_patch(poly)
patches.append(poly)
self.autoscale_view()
return patches
[docs] @_preprocess_data(replace_names=["x", "y1", "y2", "where"],
label_namer=None)
@docstring.dedent_interpd
def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
step=None, **kwargs):
"""
Fill the area between two horizontal curves.
The curves are defined by the points (*x*, *y1*) and (*x*, *y2*). This
creates one or multiple polygons describing the filled area.
You may exclude some horizontal sections from filling using *where*.
By default, the edges connect the given points directly. Use *step* if
the filling should be a step function, i.e. constant in between *x*.
Parameters
----------
x : array (length N)
The x coordinates of the nodes defining the curves.
y1 : array (length N) or scalar
The y coordinates of the nodes defining the first curve.
y2 : array (length N) or scalar, optional, default: 0
The y coordinates of the nodes defining the second curve.
where : array of bool (length N), optional, default: None
Define *where* to exclude some horizontal regions from being
filled. The filled regions are defined by the coordinates
``x[where]``. More precisely, fill between ``x[i]`` and ``x[i+1]``
if ``where[i] and where[i+1]``. Note that this definition implies
that an isolated *True* value between two *False* values in
*where* will not result in filling. Both sides of the *True*
position remain unfilled due to the adjacent *False* values.
interpolate : bool, optional
This option is only relvant if *where* is used and the two curves
are crossing each other.
Semantically, *where* is often used for *y1* > *y2* or similar.
By default, the nodes of the polygon defining the filled region
will only be placed at the positions in the *x* array. Such a
polygon cannot describe the above semantics close to the
intersection. The x-sections containing the intersecion are
simply clipped.
Setting *interpolate* to *True* will calculate the actual
interscection point and extend the filled region up to this point.
step : {'pre', 'post', 'mid'}, optional
Define *step* if the filling should be a step function,
i.e. constant in between *x*. The value determines where the
step will occur:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Other Parameters
----------------
**kwargs
All other keyword arguments are passed on to `.PolyCollection`.
They control the `.Polygon` properties:
%(PolyCollection)s
Returns
-------
`.PolyCollection`
A `.PolyCollection` containing the plotted polygons.
See Also
--------
fill_betweenx : Fill between two sets of x-values.
Notes
-----
.. [notes section required to get data note injection right]
"""
if not rcParams['_internal.classic_mode']:
color_aliases = mcoll._color_aliases
kwargs = cbook.normalize_kwargs(kwargs, color_aliases)
if not any(c in kwargs for c in ('color', 'facecolors')):
fc = self._get_patches_for_fill.get_next_color()
kwargs['facecolors'] = fc
# Handle united data, such as dates
self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
self._process_unit_info(ydata=y2)
# Convert the arrays so we can work with them
x = ma.masked_invalid(self.convert_xunits(x))
y1 = ma.masked_invalid(self.convert_yunits(y1))
y2 = ma.masked_invalid(self.convert_yunits(y2))
for name, array in [('x', x), ('y1', y1), ('y2', y2)]:
if array.ndim > 1:
raise ValueError('Input passed into argument "%r"' % name +
'is not 1-dimensional.')
if where is None:
where = True
where = where & ~functools.reduce(np.logical_or,
map(np.ma.getmask, [x, y1, y2]))
x, y1, y2 = np.broadcast_arrays(np.atleast_1d(x), y1, y2)
polys = []
for ind0, ind1 in cbook.contiguous_regions(where):
xslice = x[ind0:ind1]
y1slice = y1[ind0:ind1]
y2slice = y2[ind0:ind1]
if step is not None:
step_func = STEP_LOOKUP_MAP["steps-" + step]
xslice, y1slice, y2slice = step_func(xslice, y1slice, y2slice)
if not len(xslice):
continue
N = len(xslice)
X = np.zeros((2 * N + 2, 2), float)
if interpolate:
def get_interp_point(ind):
im1 = max(ind - 1, 0)
x_values = x[im1:ind + 1]
diff_values = y1[im1:ind + 1] - y2[im1:ind + 1]
y1_values = y1[im1:ind + 1]
if len(diff_values) == 2:
if np.ma.is_masked(diff_values[1]):
return x[im1], y1[im1]
elif np.ma.is_masked(diff_values[0]):
return x[ind], y1[ind]
diff_order = diff_values.argsort()
diff_root_x = np.interp(
0, diff_values[diff_order], x_values[diff_order])
x_order = x_values.argsort()
diff_root_y = np.interp(diff_root_x, x_values[x_order],
y1_values[x_order])
return diff_root_x, diff_root_y
start = get_interp_point(ind0)
end = get_interp_point(ind1)
else:
# the purpose of the next two lines is for when y2 is a
# scalar like 0 and we want the fill to go all the way
# down to 0 even if none of the y1 sample points do
start = xslice[0], y2slice[0]
end = xslice[-1], y2slice[-1]
X[0] = start
X[N + 1] = end
X[1:N + 1, 0] = xslice
X[1:N + 1, 1] = y1slice
X[N + 2:, 0] = xslice[::-1]
X[N + 2:, 1] = y2slice[::-1]
polys.append(X)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
XY1 = np.array([x[where], y1[where]]).T
XY2 = np.array([x[where], y2[where]]).T
self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
updatex=True, updatey=True)
self.ignore_existing_data_limits = False
self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
updatex=False, updatey=True)
self.add_collection(collection, autolim=False)
self.autoscale_view()
return collection
[docs] @_preprocess_data(replace_names=["y", "x1", "x2", "where"],
label_namer=None)
@docstring.dedent_interpd
def fill_betweenx(self, y, x1, x2=0, where=None,
step=None, interpolate=False, **kwargs):
"""
Fill the area between two vertical curves.
The curves are defined by the points (*x1*, *y*) and (*x2*, *y*). This
creates one or multiple polygons describing the filled area.
You may exclude some vertical sections from filling using *where*.
By default, the edges connect the given points directly. Use *step* if
the filling should be a step function, i.e. constant in between *y*.
Parameters
----------
y : array (length N)
The y coordinates of the nodes defining the curves.
x1 : array (length N) or scalar
The x coordinates of the nodes defining the first curve.
x2 : array (length N) or scalar, optional, default: 0
The x coordinates of the nodes defining the second curve.
where : array of bool (length N), optional, default: None
Define *where* to exclude some vertical regions from being
filled. The filled regions are defined by the coordinates
``y[where]``. More precisely, fill between ``y[i]`` and ``y[i+1]``
if ``where[i] and where[i+1]``. Note that this definition implies
that an isolated *True* value between two *False* values in
*where* will not result in filling. Both sides of the *True*
position remain unfilled due to the adjacent *False* values.
interpolate : bool, optional
This option is only relvant if *where* is used and the two curves
are crossing each other.
Semantically, *where* is often used for *x1* > *x2* or similar.
By default, the nodes of the polygon defining the filled region
will only be placed at the positions in the *y* array. Such a
polygon cannot describe the above semantics close to the
intersection. The y-sections containing the intersecion are
simply clipped.
Setting *interpolate* to *True* will calculate the actual
interscection point and extend the filled region up to this point.
step : {'pre', 'post', 'mid'}, optional
Define *step* if the filling should be a step function,
i.e. constant in between *y*. The value determines where the
step will occur:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Other Parameters
----------------
**kwargs
All other keyword arguments are passed on to `.PolyCollection`.
They control the `.Polygon` properties:
%(PolyCollection)s
Returns
-------
`.PolyCollection`
A `.PolyCollection` containing the plotted polygons.
See Also
--------
fill_between : Fill between two sets of y-values.
Notes
-----
.. [notes section required to get data note injection right]
"""
if not rcParams['_internal.classic_mode']:
color_aliases = mcoll._color_aliases
kwargs = cbook.normalize_kwargs(kwargs, color_aliases)
if not any(c in kwargs for c in ('color', 'facecolors')):
fc = self._get_patches_for_fill.get_next_color()
kwargs['facecolors'] = fc
# Handle united data, such as dates
self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs)
self._process_unit_info(xdata=x2)
# Convert the arrays so we can work with them
y = ma.masked_invalid(self.convert_yunits(y))
x1 = ma.masked_invalid(self.convert_xunits(x1))
x2 = ma.masked_invalid(self.convert_xunits(x2))
for name, array in [('y', y), ('x1', x1), ('x2', x2)]:
if array.ndim > 1:
raise ValueError('Input passed into argument "%r"' % name +
'is not 1-dimensional.')
if where is None:
where = True
where = where & ~functools.reduce(np.logical_or,
map(np.ma.getmask, [y, x1, x2]))
y, x1, x2 = np.broadcast_arrays(np.atleast_1d(y), x1, x2)
polys = []
for ind0, ind1 in cbook.contiguous_regions(where):
yslice = y[ind0:ind1]
x1slice = x1[ind0:ind1]
x2slice = x2[ind0:ind1]
if step is not None:
step_func = STEP_LOOKUP_MAP["steps-" + step]
yslice, x1slice, x2slice = step_func(yslice, x1slice, x2slice)
if not len(yslice):
continue
N = len(yslice)
Y = np.zeros((2 * N + 2, 2), float)
if interpolate:
def get_interp_point(ind):
im1 = max(ind - 1, 0)
y_values = y[im1:ind + 1]
diff_values = x1[im1:ind + 1] - x2[im1:ind + 1]
x1_values = x1[im1:ind + 1]
if len(diff_values) == 2:
if np.ma.is_masked(diff_values[1]):
return x1[im1], y[im1]
elif np.ma.is_masked(diff_values[0]):
return x1[ind], y[ind]
diff_order = diff_values.argsort()
diff_root_y = np.interp(
0, diff_values[diff_order], y_values[diff_order])
y_order = y_values.argsort()
diff_root_x = np.interp(diff_root_y, y_values[y_order],
x1_values[y_order])
return diff_root_x, diff_root_y
start = get_interp_point(ind0)
end = get_interp_point(ind1)
else:
# the purpose of the next two lines is for when x2 is a
# scalar like 0 and we want the fill to go all the way
# down to 0 even if none of the x1 sample points do
start = x2slice[0], yslice[0]
end = x2slice[-1], yslice[-1]
Y[0] = start
Y[N + 1] = end
Y[1:N + 1, 0] = x1slice
Y[1:N + 1, 1] = yslice
Y[N + 2:, 0] = x2slice[::-1]
Y[N + 2:, 1] = yslice[::-1]
polys.append(Y)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
X1Y = np.array([x1[where], y[where]]).T
X2Y = np.array([x2[where], y[where]]).T
self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits,
updatex=True, updatey=True)
self.ignore_existing_data_limits = False
self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits,
updatex=True, updatey=False)
self.add_collection(collection, autolim=False)
self.autoscale_view()
return collection
#### plotting z(x,y): imshow, pcolor and relatives, contour
[docs] @_preprocess_data(label_namer=None)
def imshow(self, X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None,
origin=None, extent=None, shape=None, filternorm=1,
filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
"""
Display an image on the axes.
Parameters
----------
X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)
Display the image in `X` to current axes. `X` may be an
array or a PIL image. If `X` is an array, it
can have the following shapes and types:
- MxN -- values to be mapped (float or int)
- MxNx3 -- RGB (float or uint8)
- MxNx4 -- RGBA (float or uint8)
MxN arrays are mapped to colors based on the `norm` (mapping
scalar to scalar) and the `cmap` (mapping the normed scalar to
a color).
Elements of RGB and RGBA arrays represent pixels of an MxN image.
All values should be in the range [0 .. 1] for floats or
[0 .. 255] for integers. Out-of-range values will be clipped to
these bounds.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
If None, default to rc `image.cmap` value. `cmap` is ignored
if `X` is 3-D, directly specifying RGB(A) values.
aspect : ['auto' | 'equal' | scalar], optional, default: None
If 'auto', changes the image aspect ratio to match that of the
axes.
If 'equal', and `extent` is None, changes the axes aspect ratio to
match that of the image. If `extent` is not `None`, the axes
aspect ratio is changed to match that of the extent.
If None, default to rc ``image.aspect`` value.
interpolation : string, optional, default: None
Acceptable values are 'none', 'nearest', 'bilinear', 'bicubic',
'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos'
If `interpolation` is None, default to rc `image.interpolation`.
See also the `filternorm` and `filterrad` parameters.
If `interpolation` is 'none', then no interpolation is performed
on the Agg, ps and pdf backends. Other backends will fall back to
'nearest'.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `~matplotlib.colors.Normalize` instance is used to scale
a 2-D float `X` input to the (0, 1) range for input to the
`cmap`. If `norm` is None, use the default func:`normalize`.
If `norm` is an instance of `~matplotlib.colors.NoNorm`,
`X` must be an array of integers that index directly into
the lookup table of the `cmap`.
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with norm to normalize
luminance data. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
The ``alpha`` argument is ignored for RGBA input data.
origin : ['upper' | 'lower'], optional, default: None
Place the [0,0] index of the array in the upper left or lower left
corner of the axes. If None, default to rc `image.origin`.
extent : scalars (left, right, bottom, top), optional, default: None
The location, in data-coordinates, of the lower-left and
upper-right corners. If `None`, the image is positioned such that
the pixel centers fall on zero-based (row, column) indices.
shape : scalars (columns, rows), optional, default: None
For raw buffer images
filternorm : scalar, optional, default: 1
A parameter for the antigrain image resize filter. From the
antigrain documentation, if `filternorm` = 1, the filter
normalizes integer values and corrects the rounding errors. It
doesn't do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means
that any sum of pixel weights must be equal to 1.0. So, the
filter function must produce a graph of the proper shape.
filterrad : scalar, optional, default: 4.0
The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'
Returns
-------
image : `~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.artist.Artist` properties.
See also
--------
matshow : Plot a matrix or an array as an image.
Notes
-----
Unless *extent* is used, pixel centers will be located at integer
coordinates. In other words: the origin will coincide with the center
of pixel (0, 0).
Two typical representations are used for RGB images with an alpha
channel:
- Straight (unassociated) alpha: R, G, and B channels represent the
color of the pixel, disregarding its opacity.
- Premultiplied (associated) alpha: R, G, and B channels represent
the color of the pixel, adjusted for its opacity by multiplication.
`~matplotlib.pyplot.imshow` expects RGB images adopting the straight
(unassociated) alpha representation.
"""
if not self._hold:
self.cla()
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
if aspect is None:
aspect = rcParams['image.aspect']
self.set_aspect(aspect)
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
filternorm=filternorm, filterrad=filterrad,
resample=resample, **kwargs)
im.set_data(X)
im.set_alpha(alpha)
if im.get_clip_path() is None:
# image does not already have clipping set, clip to axes patch
im.set_clip_path(self.patch)
#if norm is None and shape is None:
# im.set_clim(vmin, vmax)
if vmin is not None or vmax is not None:
im.set_clim(vmin, vmax)
else:
im.autoscale_None()
im.set_url(url)
# update ax.dataLim, and, if autoscaling, set viewLim
# to tightly fit the image, regardless of dataLim.
im.set_extent(im.get_extent())
self.add_image(im)
return im
@staticmethod
def _pcolorargs(funcname, *args, **kw):
# This takes one kwarg, allmatch.
# If allmatch is True, then the incoming X, Y, C must
# have matching dimensions, taking into account that
# X and Y can be 1-D rather than 2-D. This perfect
# match is required for Gouroud shading. For flat
# shading, X and Y specify boundaries, so we need
# one more boundary than color in each direction.
# For convenience, and consistent with Matlab, we
# discard the last row and/or column of C if necessary
# to meet this condition. This is done if allmatch
# is False.
allmatch = kw.pop("allmatch", False)
if len(args) == 1:
C = np.asanyarray(args[0])
numRows, numCols = C.shape
if allmatch:
X, Y = np.meshgrid(np.arange(numCols), np.arange(numRows))
else:
X, Y = np.meshgrid(np.arange(numCols + 1),
np.arange(numRows + 1))
C = cbook.safe_masked_invalid(C)
return X, Y, C
if len(args) == 3:
# Check x and y for bad data...
C = np.asanyarray(args[2])
X, Y = [cbook.safe_masked_invalid(a) for a in args[:2]]
if funcname == 'pcolormesh':
if np.ma.is_masked(X) or np.ma.is_masked(Y):
raise ValueError(
'x and y arguments to pcolormesh cannot have '
'non-finite values or be of type '
'numpy.ma.core.MaskedArray with masked values')
# safe_masked_invalid() returns an ndarray for dtypes other
# than floating point.
if isinstance(X, np.ma.core.MaskedArray):
X = X.data # strip mask as downstream doesn't like it...
if isinstance(Y, np.ma.core.MaskedArray):
Y = Y.data
numRows, numCols = C.shape
else:
raise TypeError(
'Illegal arguments to %s; see help(%s)' % (funcname, funcname))
Nx = X.shape[-1]
Ny = Y.shape[0]
if X.ndim != 2 or X.shape[0] == 1:
x = X.reshape(1, Nx)
X = x.repeat(Ny, axis=0)
if Y.ndim != 2 or Y.shape[1] == 1:
y = Y.reshape(Ny, 1)
Y = y.repeat(Nx, axis=1)
if X.shape != Y.shape:
raise TypeError(
'Incompatible X, Y inputs to %s; see help(%s)' % (
funcname, funcname))
if allmatch:
if not (Nx == numCols and Ny == numRows):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
else:
if not (numCols in (Nx, Nx - 1) and numRows in (Ny, Ny - 1)):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
C = C[:Ny - 1, :Nx - 1]
C = cbook.safe_masked_invalid(C)
return X, Y, C
[docs] @_preprocess_data(label_namer=None)
@docstring.dedent_interpd
def pcolor(self, *args, **kwargs):
r"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signature::
pcolor([X, Y,] C, **kwargs)
*X* and *Y* can be used to specify the corners of the quadrilaterals.
.. hint::
``pcolor()`` can be very slow for large arrays. In most
cases you should use the the similar but much faster
`~.Axes.pcolormesh` instead. See there for a discussion of the
differences.
Parameters
----------
C : array_like
A scalar 2-D array. The values will be color-mapped.
X, Y : array_like, optional
The coordinates of the quadrilateral corners. The quadrilateral
for ``C[i,j]`` has corners at::
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+--------+
| C[i,j] |
+--------+
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1]),
Note that the column index corresponds to the
x-coordinate, and the row index corresponds to y. For
details, see the :ref:`Notes <axes-pcolor-grid-orientation>`
section below.
The dimensions of *X* and *Y* should be one greater than those of
*C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
which case the last row and column of *C* will be ignored.
If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2-D arrays, making a
rectangular grid.
cmap : str or `~matplotlib.colors.Colormap`, optional
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : scalar, optional, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
edgecolors : {'none', None, 'face', color, color sequence}, optional
The color of the edges. Defaults to 'none'. Possible values:
- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
:rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- An mpl color or sequence of colors will set the edge color.
The singular form *edgecolor* works as an alias.
alpha : scalar, optional, default: None
The alpha blending value of the face color, between 0 (transparent)
and 1 (opaque). Note: The edgecolor is currently not affected by
this.
snap : bool, optional, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
collection : `matplotlib.collections.Collection`
Other Parameters
----------------
antialiaseds : bool, optional, default: False
The default *antialiaseds* is False if the default
*edgecolors*\ ="none" is used. This eliminates artificial lines
at patch boundaries, and works regardless of the value of alpha.
If *edgecolors* is not "none", then the default *antialiaseds*
is taken from :rc:`patch.antialiased`, which defaults to True.
Stroking the edges may be preferred if *alpha* is 1, but will
cause artifacts otherwise.
**kwargs :
Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.PolyCollection` constructor:
%(PolyCollection)s
See Also
--------
pcolormesh : for an explanation of the differences between
pcolor and pcolormesh.
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
faster alternative.
Notes
-----
**Masked arrays**
*X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
of the vertices surrounding ``C[i,j]`` (*X* or *Y* at
``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
plotted.
.. _axes-pcolor-grid-orientation:
**Grid orientation**
The grid orientation follows the standard matrix convention: An array
*C* with shape (nrows, ncolumns) is plotted with the column number as
*X* and the row number as *Y*.
**Handling of pcolor() end-cases**
``pcolor()`` displays all columns of *C* if *X* and *Y* are not
specified, or if *X* and *Y* have one more column than *C*.
If *X* and *Y* have the same number of columns as *C* then the last
column of *C* is dropped. Similarly for the rows.
Note: This behavior is different from MATLAB's ``pcolor()``, which
always discards the last row and column of *C*.
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
X, Y, C = self._pcolorargs('pcolor', *args, allmatch=False)
Ny, Nx = X.shape
# unit conversion allows e.g. datetime objects as axis values
self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
X = self.convert_xunits(X)
Y = self.convert_yunits(Y)
# convert to MA, if necessary.
C = ma.asarray(C)
X = ma.asarray(X)
Y = ma.asarray(Y)
mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
mask[0:-1, 1:] + mask[1:, 0:-1])
# don't plot if C or any of the surrounding vertices are masked.
mask = ma.getmaskarray(C) + xymask
newaxis = np.newaxis
compress = np.compress
ravelmask = (mask == 0).ravel()
X1 = compress(ravelmask, ma.filled(X[0:-1, 0:-1]).ravel())
Y1 = compress(ravelmask, ma.filled(Y[0:-1, 0:-1]).ravel())
X2 = compress(ravelmask, ma.filled(X[1:, 0:-1]).ravel())
Y2 = compress(ravelmask, ma.filled(Y[1:, 0:-1]).ravel())
X3 = compress(ravelmask, ma.filled(X[1:, 1:]).ravel())
Y3 = compress(ravelmask, ma.filled(Y[1:, 1:]).ravel())
X4 = compress(ravelmask, ma.filled(X[0:-1, 1:]).ravel())
Y4 = compress(ravelmask, ma.filled(Y[0:-1, 1:]).ravel())
npoly = len(X1)
xy = np.concatenate((X1[:, newaxis], Y1[:, newaxis],
X2[:, newaxis], Y2[:, newaxis],
X3[:, newaxis], Y3[:, newaxis],
X4[:, newaxis], Y4[:, newaxis],
X1[:, newaxis], Y1[:, newaxis]),
axis=1)
verts = xy.reshape((npoly, 5, 2))
C = compress(ravelmask, ma.filled(C[0:Ny - 1, 0:Nx - 1]).ravel())
linewidths = (0.25,)
if 'linewidth' in kwargs:
kwargs['linewidths'] = kwargs.pop('linewidth')
kwargs.setdefault('linewidths', linewidths)
if 'edgecolor' in kwargs:
kwargs['edgecolors'] = kwargs.pop('edgecolor')
ec = kwargs.setdefault('edgecolors', 'none')
# aa setting will default via collections to patch.antialiased
# unless the boundary is not stroked, in which case the
# default will be False; with unstroked boundaries, aa
# makes artifacts that are often disturbing.
if 'antialiased' in kwargs:
kwargs['antialiaseds'] = kwargs.pop('antialiased')
if 'antialiaseds' not in kwargs and (
isinstance(ec, six.string_types) and ec.lower() == "none"):
kwargs['antialiaseds'] = False
kwargs.setdefault('snap', False)
collection = mcoll.PolyCollection(verts, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_clim(vmin, vmax)
collection.autoscale_None()
self.grid(False)
x = X.compressed()
y = Y.compressed()
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform) and
hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
pts = np.vstack([x, y]).T.astype(float)
transformed_pts = trans_to_data.transform(pts)
x = transformed_pts[..., 0]
y = transformed_pts[..., 1]
self.add_collection(collection, autolim=False)
minx = np.min(x)
maxx = np.max(x)
miny = np.min(y)
maxy = np.max(y)
collection.sticky_edges.x[:] = [minx, maxx]
collection.sticky_edges.y[:] = [miny, maxy]
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return collection
[docs] @_preprocess_data(label_namer=None)
@docstring.dedent_interpd
def pcolormesh(self, *args, **kwargs):
"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signature::
pcolor([X, Y,] C, **kwargs)
*X* and *Y* can be used to specify the corners of the quadrilaterals.
.. note::
``pcolormesh()`` is similar to :func:`~Axes.pcolor`. It's much
faster and preferred in most cases. For a detailed discussion on
the differences see
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.
Parameters
----------
C : array_like
A scalar 2-D array. The values will be color-mapped.
X, Y : array_like, optional
The coordinates of the quadrilateral corners. The quadrilateral
for ``C[i,j]`` has corners at::
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+--------+
| C[i,j] |
+--------+
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1]),
Note that the column index corresponds to the
x-coordinate, and the row index corresponds to y. For
details, see the :ref:`Notes <axes-pcolormesh-grid-orientation>`
section below.
The dimensions of *X* and *Y* should be one greater than those of
*C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
which case the last row and column of *C* will be ignored.
If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2-D arrays, making a
rectangular grid.
cmap : str or `~matplotlib.colors.Colormap`, optional
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : scalar, optional, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
edgecolors : {'none', None, 'face', color, color sequence}, optional
The color of the edges. Defaults to 'none'. Possible values:
- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
:rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- An mpl color or sequence of colors will set the edge color.
The singular form *edgecolor* works as an alias.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
shading : {'flat', 'gouraud'}, optional
The fill style, Possible values:
- 'flat': A solid color is used for each quad. The color of the
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
``C[i,j]``.
- 'gouraud': Each quad will be Gouraud shaded: The color of the
corners (i', j') are given by ``C[i',j']``. The color values of
the area in between is interpolated from the corner values.
When Gouraud shading is used, *edgecolors* is ignored.
snap : bool, optional, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
mesh : `matplotlib.collections.QuadMesh`
Other Parameters
----------------
**kwargs
Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.QuadMesh` constructor:
%(QuadMesh)s
See Also
--------
pcolor : An alternative implementation with slightly different
features. For a detailed discussion on the differences see
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
faster alternative.
Notes
-----
**Masked arrays**
*C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
quadrilateral will be transparent. Masking of *X* and *Y* is not
supported. Use `~.Axes.pcolor` if you need this functionality.
.. _axes-pcolormesh-grid-orientation:
**Grid orientation**
The grid orientation follows the standard matrix convention: An array
*C* with shape (nrows, ncolumns) is plotted with the column number as
*X* and the row number as *Y*.
.. _differences-pcolor-pcolormesh:
**Differences between pcolor() and pcolormesh()**
Both methods are used to create a pseudocolor plot of a 2-D array
using quadrilaterals.
The main difference lies in the created object and internal data
handling:
While `~.Axes.pcolor` returns a `.PolyCollection`, `~.Axes.pcolormesh`
returns a `.QuadMesh`. The latter is more specialized for the given
purpose and thus is faster. It should almost always be preferred.
There is also a slight difference in the handling of masked arrays.
Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
and *Y*. The reason lies in the internal handling of the masked values.
`~.Axes.pcolor` leaves out the respective polygons from the
PolyCollection. `~.Axes.pcolormesh` sets the facecolor of the masked
elements to transparent. You can see the difference when using
edgecolors. While all edges are drawn irrespective of masking in a
QuadMesh, the edge between two adjacent masked quadrilaterals in
`~.Axes.pcolor` is not drawn as the corresponding polygons do not
exist in the PolyCollection.
Another difference is the support of Gouraud shading in
`~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat').lower()
antialiased = kwargs.pop('antialiased', False)
kwargs.setdefault('edgecolors', 'None')
allmatch = (shading == 'gouraud')
X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
Ny, Nx = X.shape
X = X.ravel()
Y = Y.ravel()
# unit conversion allows e.g. datetime objects as axis values
self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
X = self.convert_xunits(X)
Y = self.convert_yunits(Y)
# convert to one dimensional arrays
C = C.ravel()
coords = np.column_stack((X, Y)).astype(float, copy=False)
collection = mcoll.QuadMesh(Nx - 1, Ny - 1, coords,
antialiased=antialiased, shading=shading,
**kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_clim(vmin, vmax)
collection.autoscale_None()
self.grid(False)
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform) and
hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
coords = trans_to_data.transform(coords)
self.add_collection(collection, autolim=False)
minx, miny = np.min(coords, axis=0)
maxx, maxy = np.max(coords, axis=0)
collection.sticky_edges.x[:] = [minx, maxx]
collection.sticky_edges.y[:] = [miny, maxy]
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return collection
[docs] @_preprocess_data(label_namer=None)
@docstring.dedent_interpd
def pcolorfast(self, *args, **kwargs):
"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signatures::
ax.pcolorfast(C, **kwargs)
ax.pcolorfast(xr, yr, C, **kwargs)
ax.pcolorfast(x, y, C, **kwargs)
ax.pcolorfast(X, Y, C, **kwargs)
This method is similar to ~.Axes.pcolor` and `~.Axes.pcolormesh`.
It's designed to provide the fastest pcolor-type plotting with the
Agg backend. To achieve this, it uses different algorithms internally
depending on the complexity of the input grid (regular rectangular,
non-regular rectangular or arbitrary quadrilateral).
.. warning::
This method is experimental. Compared to `~.Axes.pcolor` or
`~.Axes.pcolormesh` it has some limitations:
- It supports only flat shading (no outlines)
- It lacks support for log scaling of the axes.
- It does not have a have a pyplot wrapper.
Parameters
----------
C : array-like(M, N)
A scalar 2D array. The values will be color-mapped.
*C* may be a masked array.
x, y : tuple or array-like
*X* and *Y* are used to specify the coordinates of the
quadilaterals. There are different ways to do this:
- Use tuples ``xr=(xmin, xmax)`` and ``yr=(ymin, ymax)`` to define
a *uniform rectiangular grid*.
The tuples define the outer edges of the grid. All individual
quadrilaterals will be of the same size. This is the fastest
version.
- Use 1D arrays *x*, *y* to specify a *non-uniform rectangular
grid*.
In this case *x* and *y* have to be monotonic 1D arrays of length
*N+1* and *M+1*, specifying the x and y boundaries of the cells.
The speed is intermediate. Note: The grid is checked, and if
found to be uniform the fast version is used.
- Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
grid* (i.e. if the quadrilaterals are not rectangular).
In this case *X* and *Y* are 2D arrays with shape (M, N),
specifying the x and y coordinates of the corners of the colored
quadrilaterals. See `~.Axes.pcolormesh` for details.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Leaving out *x* and *y* defaults to ``xr=(0, N)``, ``yr=(O, M)``.
cmap : str or `~matplotlib.colors.Colormap`, optional
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : scalar, optional, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
snap : bool, optional, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
image : `.AxesImage` or `.PcolorImage` or `.QuadMesh`
The return type depends on the type of grid:
- `.AxesImage` for a regular rectangular grid.
- `.PcolorImage` for a non-regular rectangular grid.
- `.QuadMesh` for a non-rectangular grid.
Notes
-----
.. [notes section required to get data note injection right]
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
if norm is not None and not isinstance(norm, mcolors.Normalize):
raise ValueError(
"'norm' must be an instance of 'mcolors.Normalize'")
C = args[-1]
nr, nc = C.shape
if len(args) == 1:
style = "image"
x = [0, nc]
y = [0, nr]
elif len(args) == 3:
x, y = args[:2]
x = np.asarray(x)
y = np.asarray(y)
if x.ndim == 1 and y.ndim == 1:
if x.size == 2 and y.size == 2:
style = "image"
else:
dx = np.diff(x)
dy = np.diff(y)
if (np.ptp(dx) < 0.01 * np.abs(dx.mean()) and
np.ptp(dy) < 0.01 * np.abs(dy.mean())):
style = "image"
else:
style = "pcolorimage"
elif x.ndim == 2 and y.ndim == 2:
style = "quadmesh"
else:
raise TypeError("arguments do not match valid signatures")
else:
raise TypeError("need 1 argument or 3 arguments")
if style == "quadmesh":
# convert to one dimensional arrays
# This should also be moved to the QuadMesh class
# data point in each cell is value at lower left corner
C = ma.ravel(C)
X = x.ravel()
Y = y.ravel()
Nx = nc + 1
Ny = nr + 1
# The following needs to be cleaned up; the renderer
# requires separate contiguous arrays for X and Y,
# but the QuadMesh class requires the 2D array.
coords = np.empty(((Nx * Ny), 2), np.float64)
coords[:, 0] = X
coords[:, 1] = Y
# The QuadMesh class can also be changed to
# handle relevant superclass kwargs; the initializer
# should do much more than it does now.
collection = mcoll.QuadMesh(nc, nr, coords, 0, edgecolors="None")
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
self.add_collection(collection, autolim=False)
xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max()
ret = collection
else: # It's one of the two image styles.
xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
if style == "image":
im = mimage.AxesImage(self, cmap, norm,
interpolation='nearest',
origin='lower',
extent=(xl, xr, yb, yt),
**kwargs)
im.set_data(C)
im.set_alpha(alpha)
elif style == "pcolorimage":
im = mimage.PcolorImage(self, x, y, C,
cmap=cmap,
norm=norm,
alpha=alpha,
**kwargs)
im.set_extent((xl, xr, yb, yt))
self.add_image(im)
ret = im
if vmin is not None or vmax is not None:
ret.set_clim(vmin, vmax)
else:
ret.autoscale_None()
ret.sticky_edges.x[:] = [xl, xr]
ret.sticky_edges.y[:] = [yb, yt]
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
self.autoscale_view(tight=True)
return ret
[docs] @_preprocess_data()
def contour(self, *args, **kwargs):
if not self._hold:
self.cla()
kwargs['filled'] = False
contours = mcontour.QuadContourSet(self, *args, **kwargs)
self.autoscale_view()
return contours
contour.__doc__ = mcontour.QuadContourSet._contour_doc
[docs] @_preprocess_data()
def contourf(self, *args, **kwargs):
if not self._hold:
self.cla()
kwargs['filled'] = True
contours = mcontour.QuadContourSet(self, *args, **kwargs)
self.autoscale_view()
return contours
contourf.__doc__ = mcontour.QuadContourSet._contour_doc
[docs] def clabel(self, CS, *args, **kwargs):
return CS.clabel(*args, **kwargs)
clabel.__doc__ = mcontour.ContourSet.clabel.__doc__
[docs] @docstring.dedent_interpd
def table(self, **kwargs):
"""
Add a table to the current axes.
Call signature::
table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None)
Returns a :class:`matplotlib.table.Table` instance. Either `cellText`
or `cellColours` must be provided. For finer grained control over
tables, use the :class:`~matplotlib.table.Table` class and add it to
the axes with :meth:`~matplotlib.axes.Axes.add_table`.
Thanks to John Gill for providing the class and table.
kwargs control the :class:`~matplotlib.table.Table`
properties:
%(Table)s
"""
return mtable.table(self, **kwargs)
#### Data analysis
[docs] @_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
def hist(self, x, bins=None, range=None, density=None, weights=None,
cumulative=False, bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False,
color=None, label=None, stacked=False, normed=None,
**kwargs):
"""
Plot a histogram.
Compute and draw the histogram of *x*. The return value is a
tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
Multiple data can be provided via *x* as a list of datasets
of potentially different length ([*x0*, *x1*, ...]), or as
a 2-D ndarray in which each column is a dataset. Note that
the ndarray form is transposed relative to the list form.
Masked arrays are not supported at present.
Parameters
----------
x : (n,) array or sequence of (n,) arrays
Input values, this takes either a single array or a sequence of
arrays which are not required to be of the same length
bins : integer or sequence or 'auto', optional
If an integer is given, ``bins + 1`` bin edges are calculated and
returned, consistent with :func:`numpy.histogram`.
If `bins` is a sequence, gives bin edges, including left edge of
first bin and right edge of last bin. In this case, `bins` is
returned unmodified.
All but the last (righthand-most) bin is half-open. In other
words, if `bins` is::
[1, 2, 3, 4]
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
*includes* 4.
Unequally spaced bins are supported if *bins* is a sequence.
If Numpy 1.11 is installed, may also be ``'auto'``.
Default is taken from the rcParam ``hist.bins``.
range : tuple or None, optional
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is ``(x.min(), x.max())``.
Range has no effect if *bins* is a sequence.
If *bins* is a sequence or *range* is specified, autoscaling
is based on the specified bin range instead of the
range of x.
Default is ``None``
density : boolean, optional
If ``True``, the first element of the return tuple will
be the counts normalized to form a probability density, i.e.,
the area (or integral) under the histogram will sum to 1.
This is achieved by dividing the count by the number of
observations times the bin width and not dividing by the total
number of observations. If *stacked* is also ``True``, the sum of
the histograms is normalized to 1.
Default is ``None`` for both *normed* and *density*. If either is
set, then that value will be used. If neither are set, then the
args will be treated as ``False``.
If both *density* and *normed* are set an error is raised.
weights : (n, ) array_like or None, optional
An array of weights, of the same shape as *x*. Each value in *x*
only contributes its associated weight towards the bin count
(instead of 1). If *normed* or *density* is ``True``,
the weights are normalized, so that the integral of the density
over the range remains 1.
Default is ``None``
cumulative : boolean, optional
If ``True``, then a histogram is computed where each bin gives the
counts in that bin plus all bins for smaller values. The last bin
gives the total number of datapoints. If *normed* or *density*
is also ``True`` then the histogram is normalized such that the
last bin equals 1. If *cumulative* evaluates to less than 0
(e.g., -1), the direction of accumulation is reversed.
In this case, if *normed* and/or *density* is also ``True``, then
the histogram is normalized such that the first bin equals 1.
Default is ``False``
bottom : array_like, scalar, or None
Location of the bottom baseline of each bin. If a scalar,
the base line for each bin is shifted by the same amount.
If an array, each bin is shifted independently and the length
of bottom must match the number of bins. If None, defaults to 0.
Default is ``None``
histtype : {'bar', 'barstacked', 'step', 'stepfilled'}, optional
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram. If multiple data
are given the bars are arranged side by side.
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default
unfilled.
- 'stepfilled' generates a lineplot that is by default
filled.
Default is 'bar'
align : {'left', 'mid', 'right'}, optional
Controls how the histogram is plotted.
- 'left': bars are centered on the left bin edges.
- 'mid': bars are centered between the bin edges.
- 'right': bars are centered on the right bin edges.
Default is 'mid'
orientation : {'horizontal', 'vertical'}, optional
If 'horizontal', `~matplotlib.pyplot.barh` will be used for
bar-type histograms and the *bottom* kwarg will be the left edges.
rwidth : scalar or None, optional
The relative width of the bars as a fraction of the bin width. If
``None``, automatically compute the width.
Ignored if *histtype* is 'step' or 'stepfilled'.
Default is ``None``
log : boolean, optional
If ``True``, the histogram axis will be set to a log scale. If
*log* is ``True`` and *x* is a 1D array, empty bins will be
filtered out and only the non-empty ``(n, bins, patches)``
will be returned.
Default is ``False``
color : color or array_like of colors or None, optional
Color spec or sequence of color specs, one per dataset. Default
(``None``) uses the standard line color sequence.
Default is ``None``
label : string or None, optional
String, or sequence of strings to match multiple datasets. Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that the legend command will work as expected.
default is ``None``
stacked : boolean, optional
If ``True``, multiple data are stacked on top of each other If
``False`` multiple data are arranged side by side if histtype is
'bar' or on top of each other if histtype is 'step'
Default is ``False``
normed : bool, optional
Deprecated; use the density keyword argument instead.
Returns
-------
n : array or list of arrays
The values of the histogram bins. See *normed* or *density*
and *weights* for a description of the possible semantics.
If input *x* is an array, then this is an array of length
*nbins*. If input is a sequence arrays
``[data1, data2,..]``, then this is a list of arrays with
the values of the histograms for each of the arrays in the
same order.
bins : array
The edges of the bins. Length nbins + 1 (nbins left edges and right
edge of last bin). Always a single array even when multiple data
sets are passed in.
patches : list or list of lists
Silent list of individual patches used to create the histogram
or list of such list if multiple input datasets.
Other Parameters
----------------
**kwargs : `~matplotlib.patches.Patch` properties
See also
--------
hist2d : 2D histograms
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
# Avoid shadowing the builtin.
bin_range = range
del range
if not self._hold:
self.cla()
if np.isscalar(x):
x = [x]
if bins is None:
bins = rcParams['hist.bins']
# Validate string inputs here so we don't have to clutter
# subsequent code.
if histtype not in ['bar', 'barstacked', 'step', 'stepfilled']:
raise ValueError("histtype %s is not recognized" % histtype)
if align not in ['left', 'mid', 'right']:
raise ValueError("align kwarg %s is not recognized" % align)
if orientation not in ['horizontal', 'vertical']:
raise ValueError(
"orientation kwarg %s is not recognized" % orientation)
if histtype == 'barstacked' and not stacked:
stacked = True
if density is not None and normed is not None:
raise ValueError("kwargs 'density' and 'normed' cannot be used "
"simultaneously. "
"Please only use 'density', since 'normed'"
"is deprecated.")
if normed is not None:
warnings.warn("The 'normed' kwarg is deprecated, and has been "
"replaced by the 'density' kwarg.")
# basic input validation
input_empty = np.size(x) == 0
# Massage 'x' for processing.
if input_empty:
x = [np.array([])]
else:
x = cbook._reshape_2D(x, 'x')
nx = len(x) # number of datasets
# Process unit information
# Unit conversion is done individually on each dataset
self._process_unit_info(xdata=x[0], kwargs=kwargs)
x = [self.convert_xunits(xi) for xi in x]
if bin_range is not None:
bin_range = self.convert_xunits(bin_range)
# Check whether bins or range are given explicitly.
binsgiven = (cbook.iterable(bins) or bin_range is not None)
# We need to do to 'weights' what was done to 'x'
if weights is not None:
w = cbook._reshape_2D(weights, 'weights')
else:
w = [None] * nx
if len(w) != nx:
raise ValueError('weights should have the same shape as x')
for xi, wi in zip(x, w):
if wi is not None and len(wi) != len(xi):
raise ValueError(
'weights should have the same shape as x')
if color is None:
color = [self._get_lines.get_next_color() for i in xrange(nx)]
else:
color = mcolors.to_rgba_array(color)
if len(color) != nx:
raise ValueError("color kwarg must have one color per dataset")
# If bins are not specified either explicitly or via range,
# we need to figure out the range required for all datasets,
# and supply that to np.histogram.
if not binsgiven and not input_empty:
xmin = np.inf
xmax = -np.inf
for xi in x:
if len(xi) > 0:
xmin = min(xmin, xi.min())
xmax = max(xmax, xi.max())
bin_range = (xmin, xmax)
density = bool(density) or bool(normed)
if density and not stacked:
hist_kwargs = dict(range=bin_range, density=density)
else:
hist_kwargs = dict(range=bin_range)
# List to store all the top coordinates of the histograms
tops = []
mlast = None
# Loop through datasets
for i in xrange(nx):
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
m = m.astype(float) # causes problems later if it's an int
if mlast is None:
mlast = np.zeros(len(bins)-1, m.dtype)
if stacked:
m += mlast
mlast[:] = m
tops.append(m)
# If a stacked density plot, normalize so the area of all the stacked
# histograms together is 1
if stacked and density:
db = np.diff(bins)
for m in tops:
m[:] = (m / db) / tops[-1].sum()
if cumulative:
slc = slice(None)
if cbook.is_numlike(cumulative) and cumulative < 0:
slc = slice(None, None, -1)
if density:
tops = [(m * np.diff(bins))[slc].cumsum()[slc] for m in tops]
else:
tops = [m[slc].cumsum()[slc] for m in tops]
patches = []
# Save autoscale state for later restoration; turn autoscaling
# off so we can do it all a single time at the end, instead
# of having it done by bar or fill and then having to be redone.
_saved_autoscalex = self.get_autoscalex_on()
_saved_autoscaley = self.get_autoscaley_on()
self.set_autoscalex_on(False)
self.set_autoscaley_on(False)
if histtype.startswith('bar'):
totwidth = np.diff(bins)
if rwidth is not None:
dr = np.clip(rwidth, 0, 1)
elif (len(tops) > 1 and
((not stacked) or rcParams['_internal.classic_mode'])):
dr = 0.8
else:
dr = 1.0
if histtype == 'bar' and not stacked:
width = dr * totwidth / nx
dw = width
boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
elif histtype == 'barstacked' or stacked:
width = dr * totwidth
boffset, dw = 0.0, 0.0
if align == 'mid' or align == 'edge':
boffset += 0.5 * totwidth
elif align == 'right':
boffset += totwidth
if orientation == 'horizontal':
_barfunc = self.barh
bottom_kwarg = 'left'
else: # orientation == 'vertical'
_barfunc = self.bar
bottom_kwarg = 'bottom'
for m, c in zip(tops, color):
if bottom is None:
bottom = np.zeros(len(m))
if stacked:
height = m - bottom
else:
height = m
patch = _barfunc(bins[:-1]+boffset, height, width,
align='center', log=log,
color=c, **{bottom_kwarg: bottom})
patches.append(patch)
if stacked:
bottom[:] = m
boffset += dw
elif histtype.startswith('step'):
# these define the perimeter of the polygon
x = np.zeros(4 * len(bins) - 3)
y = np.zeros(4 * len(bins) - 3)
x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]
if bottom is None:
bottom = np.zeros(len(bins) - 1)
y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = bottom, bottom
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
if log:
if orientation == 'horizontal':
self.set_xscale('log', nonposx='clip')
logbase = self.xaxis._scale.base
else: # orientation == 'vertical'
self.set_yscale('log', nonposy='clip')
logbase = self.yaxis._scale.base
# Setting a minimum of 0 results in problems for log plots
if np.min(bottom) > 0:
minimum = np.min(bottom)
elif density or weights is not None:
# For data that is normed to form a probability density,
# set to minimum data value / logbase
# (gives 1 full tick-label unit for the lowest filled bin)
ndata = np.array(tops)
minimum = (np.min(ndata[ndata > 0])) / logbase
else:
# For non-normed (density = False) data,
# set the min to 1 / log base,
# again so that there is 1 full tick-label unit
# for the lowest bin
minimum = 1.0 / logbase
y[0], y[-1] = minimum, minimum
else:
minimum = 0
if align == 'left' or align == 'center':
x -= 0.5*(bins[1]-bins[0])
elif align == 'right':
x += 0.5*(bins[1]-bins[0])
# If fill kwarg is set, it will be passed to the patch collection,
# overriding this
fill = (histtype == 'stepfilled')
xvals, yvals = [], []
for m in tops:
if stacked:
# starting point for drawing polygon
y[0] = y[1]
# top of the previous polygon becomes the bottom
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
# set the top of this polygon
y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = (m + bottom,
m + bottom)
if log:
y[y < minimum] = minimum
if orientation == 'horizontal':
xvals.append(y.copy())
yvals.append(x.copy())
else:
xvals.append(x.copy())
yvals.append(y.copy())
# stepfill is closed, step is not
split = -1 if fill else 2 * len(bins)
# add patches in reverse order so that when stacking,
# items lower in the stack are plotted on top of
# items higher in the stack
for x, y, c in reversed(list(zip(xvals, yvals, color))):
patches.append(self.fill(
x[:split], y[:split],
closed=True if fill else None,
facecolor=c,
edgecolor=None if fill else c,
fill=fill if fill else None))
for patch_list in patches:
for patch in patch_list:
if orientation == 'vertical':
patch.sticky_edges.y.append(minimum)
elif orientation == 'horizontal':
patch.sticky_edges.x.append(minimum)
# we return patches, so put it back in the expected order
patches.reverse()
self.set_autoscalex_on(_saved_autoscalex)
self.set_autoscaley_on(_saved_autoscaley)
self.autoscale_view()
if label is None:
labels = [None]
elif isinstance(label, six.string_types):
labels = [label]
else:
labels = [six.text_type(lab) for lab in label]
for patch, lbl in zip_longest(patches, labels, fillvalue=None):
if patch:
p = patch[0]
p.update(kwargs)
if lbl is not None:
p.set_label(lbl)
for p in patch[1:]:
p.update(kwargs)
p.set_label('_nolegend_')
if nx == 1:
return tops[0], bins, cbook.silent_list('Patch', patches[0])
else:
return tops, bins, cbook.silent_list('Lists of Patches', patches)
[docs] @_preprocess_data(replace_names=["x", "y", "weights"], label_namer=None)
def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
cmin=None, cmax=None, **kwargs):
"""
Make a 2D histogram plot.
Parameters
----------
x, y: array_like, shape (n, )
Input values
bins: [None | int | [int, int] | array_like | [array, array]]
The bin specification:
- If int, the number of bins for the two dimensions
(nx=ny=bins).
- If ``[int, int]``, the number of bins in each dimension
(nx, ny = bins).
- If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
- If ``[array, array]``, the bin edges in each dimension
(x_edges, y_edges = bins).
The default value is 10.
range : array_like shape(2, 2), optional, default: None
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): ``[[xmin,
xmax], [ymin, ymax]]``. All values outside of this range will be
considered outliers and not tallied in the histogram.
normed : boolean, optional, default: False
Normalize histogram.
weights : array_like, shape (n, ), optional, default: None
An array of values w_i weighing each sample (x_i, y_i).
cmin : scalar, optional, default: None
All bins that has count less than cmin will not be displayed and
these count values in the return value count histogram will also
be set to nan upon return
cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set
to none before passing to imshow) and these count values in the
return value count histogram will also be set to nan upon return
Returns
-------
h : 2D array
The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are
histogrammed along the second dimension.
xedges : 1D array
The bin edges along the x axis.
yedges : 1D array
The bin edges along the y axis.
image : AxesImage
Other Parameters
----------------
cmap : Colormap or str, optional
A `.colors.Colormap` instance. If not set, use rc settings.
norm : Normalize, optional
A `.colors.Normalize` instance is used to
scale luminance data to ``[0, 1]``. If not set, defaults to
`.colors.Normalize()`.
vmin/vmax : None or scalar, optional
Arguments passed to the `~.colors.Normalize` instance.
alpha : ``0 <= scalar <= 1`` or ``None``, optional
The alpha blending value.
See also
--------
hist : 1D histogram plotting
Notes
-----
- Currently ``hist2d`` calculates it's own axis limits, and any limits
previously set are ignored.
- Rendering the histogram with a logarithmic color scale is
accomplished by passing a `.colors.LogNorm` instance to the *norm*
keyword argument. Likewise, power-law normalization (similar
in effect to gamma correction) can be accomplished with
`.colors.PowerNorm`.
"""
h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
normed=normed, weights=weights)
if cmin is not None:
h[h < cmin] = None
if cmax is not None:
h[h > cmax] = None
pc = self.pcolorfast(xedges, yedges, h.T, **kwargs)
self.set_xlim(xedges[0], xedges[-1])
self.set_ylim(yedges[0], yedges[-1])
return h, xedges, yedges, pc
[docs] @_preprocess_data(replace_names=["x"], label_namer=None)
@docstring.dedent_interpd
def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None, pad_to=None,
sides=None, scale_by_freq=None, return_line=None, **kwargs):
r"""
Plot the power spectral density.
Call signature::
psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, return_line=None, **kwargs)
The power spectral density :math:`P_{xx}` by Welch's average
periodogram method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noverlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
with a scaling to correct for power loss due to windowing.
If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(PSD)s
noverlap : integer
The number of points of overlap between segments.
The default value is 0 (no overlap).
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
return_line : bool
Whether to include the line object plotted in the returned values.
Default is False.
Returns
-------
Pxx : 1-D array
The values for the power spectrum `P_{xx}` before scaling
(real valued)
freqs : 1-D array
The frequencies corresponding to the elements in *Pxx*
line : a :class:`~matplotlib.lines.Line2D` instance
The line created by this function.
Only returned if *return_line* is True.
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
:func:`specgram`
:func:`specgram` differs in the default overlap; in not returning
the mean of the segment periodograms; in returning the times of the
segments; and in plotting a colormap instead of a line.
:func:`magnitude_spectrum`
:func:`magnitude_spectrum` plots the magnitude spectrum.
:func:`csd`
:func:`csd` plots the spectral density between two signals.
Notes
-----
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
if not self._hold:
self.cla()
if Fc is None:
Fc = 0
pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq)
freqs += Fc
if scale_by_freq in (None, True):
psd_units = 'dB/Hz'
else:
psd_units = 'dB'
line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
logi = int(np.log10(intv))
if logi == 0:
logi = .1
step = 10 * logi
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
if return_line is None or not return_line:
return pxx, freqs
else:
return pxx, freqs, line
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None, pad_to=None,
sides=None, scale_by_freq=None, return_line=None, **kwargs):
"""
Plot the cross-spectral density.
Call signature::
csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, return_line=None, **kwargs)
The cross spectral density :math:`P_{xy}` by Welch's average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. *noverlap* gives
the length of the overlap between segments. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
padded to *NFFT*.
Parameters
----------
x, y : 1-D arrays or sequences
Arrays or sequences containing the data
%(Spectral)s
%(PSD)s
noverlap : integer
The number of points of overlap between segments.
The default value is 0 (no overlap).
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
return_line : bool
Whether to include the line object plotted in the returned values.
Default is False.
Returns
-------
Pxy : 1-D array
The values for the cross spectrum `P_{xy}` before scaling
(complex valued)
freqs : 1-D array
The frequencies corresponding to the elements in *Pxy*
line : a :class:`~matplotlib.lines.Line2D` instance
The line created by this function.
Only returned if *return_line* is True.
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
:func:`psd`
:func:`psd` is the equivalent to setting y=x.
Notes
-----
For plotting, the power is plotted as
:math:`10\\log_{10}(P_{xy})` for decibels, though `P_{xy}` itself
is returned.
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
if not self._hold:
self.cla()
if Fc is None:
Fc = 0
pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq)
# pxy is complex
freqs += Fc
line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Cross Spectrum Magnitude (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
step = 10 * int(np.log10(intv))
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
if return_line is None or not return_line:
return pxy, freqs
else:
return pxy, freqs, line
[docs] @_preprocess_data(replace_names=["x"], label_namer=None)
@docstring.dedent_interpd
def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, scale=None,
**kwargs):
"""
Plot the magnitude spectrum.
Call signature::
magnitude_spectrum(x, Fs=2, Fc=0, window=mlab.window_hanning,
pad_to=None, sides='default', **kwargs)
Compute the magnitude spectrum of *x*. Data is padded to a
length of *pad_to* and the windowing function *window* is applied to
the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(Single_Spectrum)s
scale : [ 'default' | 'linear' | 'dB' ]
The scaling of the values in the *spec*. 'linear' is no scaling.
'dB' returns the values in dB scale, i.e., the dB amplitude
(20 * log10). 'default' is 'linear'.
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns
-------
spectrum : 1-D array
The values for the magnitude spectrum before scaling (real valued)
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*
line : a :class:`~matplotlib.lines.Line2D` instance
The line created by this function
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
:func:`psd`
:func:`psd` plots the power spectral density.`.
:func:`angle_spectrum`
:func:`angle_spectrum` plots the angles of the corresponding
frequencies.
:func:`phase_spectrum`
:func:`phase_spectrum` plots the phase (unwrapped angle) of the
corresponding frequencies.
:func:`specgram`
:func:`specgram` can plot the magnitude spectrum of segments within
the signal in a colormap.
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
if not self._hold:
self.cla()
if Fc is None:
Fc = 0
if scale is None or scale == 'default':
scale = 'linear'
spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
if scale == 'linear':
Z = spec
yunits = 'energy'
elif scale == 'dB':
Z = 20. * np.log10(spec)
yunits = 'dB'
else:
raise ValueError('Unknown scale %s', scale)
lines = self.plot(freqs, Z, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Magnitude (%s)' % yunits)
return spec, freqs, lines[0]
[docs] @_preprocess_data(replace_names=["x"], label_namer=None)
@docstring.dedent_interpd
def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, **kwargs):
"""
Plot the angle spectrum.
Call signature::
angle_spectrum(x, Fs=2, Fc=0, window=mlab.window_hanning,
pad_to=None, sides='default', **kwargs)
Compute the angle spectrum (wrapped phase spectrum) of *x*.
Data is padded to a length of *pad_to* and the windowing function
*window* is applied to the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(Single_Spectrum)s
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns
-------
spectrum : 1-D array
The values for the angle spectrum in radians (real valued)
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*
line : a :class:`~matplotlib.lines.Line2D` instance
The line created by this function
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
:func:`magnitude_spectrum`
:func:`angle_spectrum` plots the magnitudes of the corresponding
frequencies.
:func:`phase_spectrum`
:func:`phase_spectrum` plots the unwrapped version of this
function.
:func:`specgram`
:func:`specgram` can plot the angle spectrum of segments within the
signal in a colormap.
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
if not self._hold:
self.cla()
if Fc is None:
Fc = 0
spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
lines = self.plot(freqs, spec, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Angle (radians)')
return spec, freqs, lines[0]
[docs] @_preprocess_data(replace_names=["x"], label_namer=None)
@docstring.dedent_interpd
def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, **kwargs):
"""
Plot the phase spectrum.
Call signature::
phase_spectrum(x, Fs=2, Fc=0, window=mlab.window_hanning,
pad_to=None, sides='default', **kwargs)
Compute the phase spectrum (unwrapped angle spectrum) of *x*.
Data is padded to a length of *pad_to* and the windowing function
*window* is applied to the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(Single_Spectrum)s
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns
-------
spectrum : 1-D array
The values for the phase spectrum in radians (real valued)
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*
line : a :class:`~matplotlib.lines.Line2D` instance
The line created by this function
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
See Also
--------
:func:`magnitude_spectrum`
:func:`magnitude_spectrum` plots the magnitudes of the
corresponding frequencies.
:func:`angle_spectrum`
:func:`angle_spectrum` plots the wrapped version of this function.
:func:`specgram`
:func:`specgram` can plot the phase spectrum of segments within the
signal in a colormap.
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
if not self._hold:
self.cla()
if Fc is None:
Fc = 0
spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
lines = self.plot(freqs, spec, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Phase (radians)')
return spec, freqs, lines[0]
[docs] @_preprocess_data(replace_names=["x", "y"], label_namer=None)
@docstring.dedent_interpd
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
Plot the coherence between *x* and *y*.
Plot the coherence between *x* and *y*. Coherence is the
normalized cross spectral density:
.. math::
C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}
Parameters
----------
%(Spectral)s
%(PSD)s
noverlap : integer
The number of points of overlap between blocks. The
default value is 0 (no overlap).
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns
-------
The return value is a tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
kwargs are applied to the lines.
Other Parameters
----------------
**kwargs :
Keyword arguments control the :class:`~matplotlib.lines.Line2D`
properties:
%(Line2D)s
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
if not self._hold:
self.cla()
cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap,
scale_by_freq=scale_by_freq)
freqs += Fc
self.plot(freqs, cxy, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Coherence')
self.grid(True)
return cxy, freqs
[docs] @_preprocess_data(replace_names=["x"], label_namer=None)
@docstring.dedent_interpd
def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None,
cmap=None, xextent=None, pad_to=None, sides=None,
scale_by_freq=None, mode=None, scale=None,
vmin=None, vmax=None, **kwargs):
"""
Plot a spectrogram.
Call signature::
specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freq=None, mode='default', scale='default',
**kwargs)
Compute and plot a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the spectrum of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*. The spectrogram is plotted as a colormap
(using imshow).
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data.
%(Spectral)s
%(PSD)s
mode : [ 'default' | 'psd' | 'magnitude' | 'angle' | 'phase' ]
What sort of spectrum to use. Default is 'psd', which takes
the power spectral density. 'complex' returns the complex-valued
frequency spectrum. 'magnitude' returns the magnitude spectrum.
'angle' returns the phase spectrum without unwrapping. 'phase'
returns the phase spectrum with unwrapping.
noverlap : integer
The number of points of overlap between blocks. The
default value is 128.
scale : [ 'default' | 'linear' | 'dB' ]
The scaling of the values in the *spec*. 'linear' is no scaling.
'dB' returns the values in dB scale. When *mode* is 'psd',
this is dB power (10 * log10). Otherwise this is dB amplitude
(20 * log10). 'default' is 'dB' if *mode* is 'psd' or
'magnitude' and 'linear' otherwise. This must be 'linear'
if *mode* is 'angle' or 'phase'.
Fc : integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
cmap :
A :class:`matplotlib.colors.Colormap` instance; if *None*, use
default determined by rc
xextent : [None | (xmin, xmax)]
The image extent along the x-axis. The default sets *xmin* to the
left border of the first bin (*spectrum* column) and *xmax* to the
right border of the last bin. Note that for *noverlap>0* the width
of the bins is smaller than those of the segments.
**kwargs :
Additional kwargs are passed on to imshow which makes the
specgram image
Returns
-------
spectrum : 2-D array
Columns are the periodograms of successive segments.
freqs : 1-D array
The frequencies corresponding to the rows in *spectrum*.
t : 1-D array
The times corresponding to midpoints of segments (i.e., the columns
in *spectrum*).
im : instance of class :class:`~matplotlib.image.AxesImage`
The image created by imshow containing the spectrogram
See Also
--------
:func:`psd`
:func:`psd` differs in the default overlap; in returning the mean
of the segment periodograms; in not returning times; and in
generating a line plot instead of colormap.
:func:`magnitude_spectrum`
A single spectrum, similar to having a single segment when *mode*
is 'magnitude'. Plots a line instead of a colormap.
:func:`angle_spectrum`
A single spectrum, similar to having a single segment when *mode*
is 'angle'. Plots a line instead of a colormap.
:func:`phase_spectrum`
A single spectrum, similar to having a single segment when *mode*
is 'phase'. Plots a line instead of a colormap.
Notes
-----
The parameters *detrend* and *scale_by_freq* do only apply when *mode*
is set to 'psd'.
"""
if not self._hold:
self.cla()
if NFFT is None:
NFFT = 256 # same default as in mlab.specgram()
if Fc is None:
Fc = 0 # same default as in mlab._spectral_helper()
if noverlap is None:
noverlap = 128 # same default as in mlab.specgram()
if mode == 'complex':
raise ValueError('Cannot plot a complex specgram')
if scale is None or scale == 'default':
if mode in ['angle', 'phase']:
scale = 'linear'
else:
scale = 'dB'
elif mode in ['angle', 'phase'] and scale == 'dB':
raise ValueError('Cannot use dB scale with angle or phase mode')
spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
detrend=detrend, window=window,
noverlap=noverlap, pad_to=pad_to,
sides=sides,
scale_by_freq=scale_by_freq,
mode=mode)
if scale == 'linear':
Z = spec
elif scale == 'dB':
if mode is None or mode == 'default' or mode == 'psd':
Z = 10. * np.log10(spec)
else:
Z = 20. * np.log10(spec)
else:
raise ValueError('Unknown scale %s', scale)
Z = np.flipud(Z)
if xextent is None:
# padding is needed for first and last segment:
pad_xextent = (NFFT-noverlap) / Fs / 2
xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
xmin, xmax = xextent
freqs += Fc
extent = xmin, xmax, freqs[0], freqs[-1]
im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
**kwargs)
self.axis('auto')
return spec, freqs, t, im
[docs] def spy(self, Z, precision=0, marker=None, markersize=None,
aspect='equal', origin="upper", **kwargs):
"""
Plot the sparsity pattern on a 2-D array.
``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.
Parameters
----------
Z : sparse array (n, m)
The array to be plotted.
precision : float, optional, default: 0
If *precision* is 0, any non-zero value will be plotted; else,
values of :math:`|Z| > precision` will be plotted.
For :class:`scipy.sparse.spmatrix` instances, there is a special
case: if *precision* is 'present', any value present in the array
will be plotted, even if it is identically zero.
origin : ["upper", "lower"], optional, default: "upper"
Place the [0,0] index of the array in the upper left or lower left
corner of the axes.
aspect : ['auto' | 'equal' | scalar], optional, default: "equal"
If 'equal', and `extent` is None, changes the axes aspect ratio to
match that of the image. If `extent` is not `None`, the axes
aspect ratio is changed to match that of the extent.
If 'auto', changes the image aspect ratio to match that of the
axes.
If None, default to rc ``image.aspect`` value.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for :class:`scipy.sparse.spmatrix` instances.
If *marker* and *markersize* are *None*, an image will be
returned and any remaining kwargs are passed to
:func:`~matplotlib.pyplot.imshow`; else, a
:class:`~matplotlib.lines.Line2D` object will be returned with
the value of marker determining the marker type, and any
remaining kwargs passed to the
:meth:`~matplotlib.axes.Axes.plot` method.
If *marker* and *markersize* are *None*, useful kwargs include:
* *cmap*
* *alpha*
See also
--------
imshow : for image options.
plot : for plotting options
"""
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
marker = 's'
if marker is None and markersize is None:
Z = np.asarray(Z)
mask = np.abs(Z) > precision
if 'cmap' not in kwargs:
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
name='binary')
nr, nc = Z.shape
extent = [-0.5, nc - 0.5, nr - 0.5, -0.5]
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
extent=extent, origin=origin, **kwargs)
else:
if hasattr(Z, 'tocoo'):
c = Z.tocoo()
if precision == 'present':
y = c.row
x = c.col
else:
nonzero = np.abs(c.data) > precision
y = c.row[nonzero]
x = c.col[nonzero]
else:
Z = np.asarray(Z)
nonzero = np.abs(Z) > precision
y, x = np.nonzero(nonzero)
if marker is None:
marker = 's'
if markersize is None:
markersize = 10
marks = mlines.Line2D(x, y, linestyle='None',
marker=marker, markersize=markersize, **kwargs)
self.add_line(marks)
nr, nc = Z.shape
self.set_xlim(xmin=-0.5, xmax=nc - 0.5)
self.set_ylim(ymin=nr - 0.5, ymax=-0.5)
self.set_aspect(aspect)
ret = marks
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return ret
[docs] def matshow(self, Z, **kwargs):
"""
Plot the values of a 2D matrix or array as color-coded image.
The matrix will be shown the way it would be printed, with the first
row at the top. Row and column numbering is zero-based.
Parameters
----------
Z : array-like(N, M)
The matrix to be displayed.
Returns
-------
image : `~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
See Also
--------
imshow : More general function to plot data on a 2D regular raster.
Notes
-----
This is just a convenience function wrapping `.imshow` to set useful
defaults for a displaying a matrix. In particular:
- Set ``origin='upper'``.
- Set ``interpolation='nearest'``.
- Set ``aspect='equal'``.
- Ticks are placed to the left and above.
- Ticks are formatted to show integer indices.
"""
Z = np.asanyarray(Z)
nr, nc = Z.shape
kw = {'origin': 'upper',
'interpolation': 'nearest',
'aspect': 'equal'} # (already the imshow default)
kw.update(kwargs)
im = self.imshow(Z, **kw)
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return im
[docs] @_preprocess_data(replace_names=["dataset"], label_namer=None)
def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, showmedians=False,
points=100, bw_method=None):
"""
Make a violin plot.
Make a violin plot for each column of *dataset* or each vector in
sequence *dataset*. Each filled area extends to represent the
entire data range, with optional lines at the mean, the median,
the minimum, and the maximum.
Parameters
----------
dataset : Array or a sequence of vectors.
The input data.
positions : array-like, default = [1, 2, ..., n]
Sets the positions of the violins. The ticks and limits are
automatically set to match the positions.
vert : bool, default = True.
If true, creates a vertical violin plot.
Otherwise, creates a horizontal violin plot.
widths : array-like, default = 0.5
Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the
available horizontal space.
showmeans : bool, default = False
If `True`, will toggle rendering of the means.
showextrema : bool, default = True
If `True`, will toggle rendering of the extrema.
showmedians : bool, default = False
If `True`, will toggle rendering of the medians.
points : scalar, default = 100
Defines the number of points to evaluate each of the
gaussian kernel density estimations at.
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a
scalar, this will be used directly as `kde.factor`. If a
callable, it should take a `GaussianKDE` instance as its only
parameter and return a scalar. If None (default), 'scott' is used.
Returns
-------
result : dict
A dictionary mapping each component of the violinplot to a
list of the corresponding collection instances created. The
dictionary has the following keys:
- ``bodies``: A list of the
:class:`matplotlib.collections.PolyCollection` instances
containing the filled area of each violin.
- ``cmeans``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the mean values of each of the
violin's distribution.
- ``cmins``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the bottom of each violin's
distribution.
- ``cmaxes``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the top of each violin's
distribution.
- ``cbars``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the centers of each violin's
distribution.
- ``cmedians``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the median values of each of the
violin's distribution.
Notes
-----
.. [Notes section required for data comment. See #10189.]
"""
def _kde_method(X, coords):
# fallback gracefully if the vector contains only one value
if np.all(X[0] == X):
return (X[0] == coords).astype(float)
kde = mlab.GaussianKDE(X, bw_method)
return kde.evaluate(coords)
vpstats = cbook.violin_stats(dataset, _kde_method, points=points)
return self.violin(vpstats, positions=positions, vert=vert,
widths=widths, showmeans=showmeans,
showextrema=showextrema, showmedians=showmedians)
[docs] def violin(self, vpstats, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, showmedians=False):
"""Drawing function for violin plots.
Draw a violin plot for each column of `vpstats`. Each filled area
extends to represent the entire data range, with optional lines at the
mean, the median, the minimum, and the maximum.
Parameters
----------
vpstats : list of dicts
A list of dictionaries containing stats for each violin plot.
Required keys are:
- ``coords``: A list of scalars containing the coordinates that
the violin's kernel density estimate were evaluated at.
- ``vals``: A list of scalars containing the values of the
kernel density estimate at each of the coordinates given
in *coords*.
- ``mean``: The mean value for this violin's dataset.
- ``median``: The median value for this violin's dataset.
- ``min``: The minimum value for this violin's dataset.
- ``max``: The maximum value for this violin's dataset.
positions : array-like, default = [1, 2, ..., n]
Sets the positions of the violins. The ticks and limits are
automatically set to match the positions.
vert : bool, default = True.
If true, plots the violins veritcally.
Otherwise, plots the violins horizontally.
widths : array-like, default = 0.5
Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the
available horizontal space.
showmeans : bool, default = False
If true, will toggle rendering of the means.
showextrema : bool, default = True
If true, will toggle rendering of the extrema.
showmedians : bool, default = False
If true, will toggle rendering of the medians.
Returns
-------
result : dict
A dictionary mapping each component of the violinplot to a
list of the corresponding collection instances created. The
dictionary has the following keys:
- ``bodies``: A list of the
:class:`matplotlib.collections.PolyCollection` instances
containing the filled area of each violin.
- ``cmeans``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the mean values of each of the
violin's distribution.
- ``cmins``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the bottom of each violin's
distribution.
- ``cmaxes``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the top of each violin's
distribution.
- ``cbars``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the centers of each violin's
distribution.
- ``cmedians``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the median values of each of the
violin's distribution.
"""
# Statistical quantities to be plotted on the violins
means = []
mins = []
maxes = []
medians = []
# Collections to be returned
artists = {}
N = len(vpstats)
datashape_message = ("List of violinplot statistics and `{0}` "
"values must have the same length")
# Validate positions
if positions is None:
positions = range(1, N + 1)
elif len(positions) != N:
raise ValueError(datashape_message.format("positions"))
# Validate widths
if np.isscalar(widths):
widths = [widths] * N
elif len(widths) != N:
raise ValueError(datashape_message.format("widths"))
# Calculate ranges for statistics lines
pmins = -0.25 * np.array(widths) + positions
pmaxes = 0.25 * np.array(widths) + positions
# Check whether we are rendering vertically or horizontally
if vert:
fill = self.fill_betweenx
perp_lines = self.hlines
par_lines = self.vlines
else:
fill = self.fill_between
perp_lines = self.vlines
par_lines = self.hlines
if rcParams['_internal.classic_mode']:
fillcolor = 'y'
edgecolor = 'r'
else:
fillcolor = edgecolor = self._get_lines.get_next_color()
# Render violins
bodies = []
for stats, pos, width in zip(vpstats, positions, widths):
# The 0.5 factor reflects the fact that we plot from v-p to
# v+p
vals = np.array(stats['vals'])
vals = 0.5 * width * vals / vals.max()
bodies += [fill(stats['coords'],
-vals + pos,
vals + pos,
facecolor=fillcolor,
alpha=0.3)]
means.append(stats['mean'])
mins.append(stats['min'])
maxes.append(stats['max'])
medians.append(stats['median'])
artists['bodies'] = bodies
# Render means
if showmeans:
artists['cmeans'] = perp_lines(means, pmins, pmaxes,
colors=edgecolor)
# Render extrema
if showextrema:
artists['cmaxes'] = perp_lines(maxes, pmins, pmaxes,
colors=edgecolor)
artists['cmins'] = perp_lines(mins, pmins, pmaxes,
colors=edgecolor)
artists['cbars'] = par_lines(positions, mins, maxes,
colors=edgecolor)
# Render medians
if showmedians:
artists['cmedians'] = perp_lines(medians,
pmins,
pmaxes,
colors=edgecolor)
return artists
[docs] def tricontour(self, *args, **kwargs):
return mtri.tricontour(self, *args, **kwargs)
tricontour.__doc__ = mtri.tricontour.__doc__
[docs] def tricontourf(self, *args, **kwargs):
return mtri.tricontourf(self, *args, **kwargs)
tricontourf.__doc__ = mtri.tricontour.__doc__
[docs] def tripcolor(self, *args, **kwargs):
return mtri.tripcolor(self, *args, **kwargs)
tripcolor.__doc__ = mtri.tripcolor.__doc__
[docs] def triplot(self, *args, **kwargs):
return mtri.triplot(self, *args, **kwargs)
triplot.__doc__ = mtri.triplot.__doc__