Note
Click here to download the full example code
Generating 3D plots using the mplot3d toolkit.
Contents
An Axes3D object is created just like any other axes using
the projection=‘3d’ keyword.
Create a new matplotlib.figure.Figure
and
add a new axes to it of type Axes3D
:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
New in version 1.0.0: This approach is the preferred method of creating a 3D axes.
Note
Prior to version 1.0.0, the method of creating a 3D axes was
different. For those using older versions of matplotlib, change
ax = fig.add_subplot(111, projection='3d')
to ax = Axes3D(fig)
.
See the mplot3d FAQ for more information about the mplot3d toolkit.
Axes3D.
plot
(xs, ys, *args, **kwargs)[source]¶Plot 2D or 3D data.
Argument  Description 

xs, ys  x, y coordinates of vertices 
zs  z value(s), either one for all points or one for each point. 
zdir  Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. 
Other arguments are passed on to
plot()
Axes3D.
scatter
(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)[source]¶Create a scatter plot.
Argument  Description 

xs, ys  Positions of data points. 
zs  Either an array of the same length as xs and ys or a single value to place all points in the same plane. Default is 0. 
zdir  Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. 
s  Size in points^2. It is a scalar or an array of the same length as x and y. 
c  A color. c can be a single color format string, or a sequence of color specifications of length N, or a sequence of N numbers to be mapped to colors using the cmap and norm specified via kwargs (see below). Note that c should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. c can be a 2D array in which the rows are RGB or RGBA, however, including the case of a single row to specify the same color for all points. 
depthshade  Whether or not to shade the scatter markers to give the appearance of depth. Default is True. 
Keyword arguments are passed on to
scatter()
.
Returns a Patch3DCollection
Axes3D.
plot_wireframe
(X, Y, Z, *args, **kwargs)[source]¶Plot a 3D wireframe.
Note
The rcount and ccount kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points.
Parameters: 


Axes3D.
plot_surface
(X, Y, Z, *args, **kwargs)[source]¶Create a surface plot.
By default it will be colored in shades of a solid color, but it also supports color mapping by supplying the cmap argument.
Note
The rcount and ccount kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points.
Parameters: 


Axes3D.
plot_trisurf
(*args, **kwargs)[source]¶Argument  Description 

X, Y, Z  Data values as 1D arrays 
color  Color of the surface patches 
cmap  A colormap for the surface patches. 
norm  An instance of Normalize to map values to colors 
vmin  Minimum value to map 
vmax  Maximum value to map 
shade  Whether to shade the facecolors 
The (optional) triangulation can be specified in one of two ways; either:
plot_trisurf(triangulation, ...)
where triangulation is a Triangulation
object, or:
plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)
in which case a Triangulation object will be created. See
Triangulation
for a explanation of
these possibilities.
The remaining arguments are:
plot_trisurf(..., Z)
where Z is the array of values to contour, one per point in the triangulation.
Other arguments are passed on to
Poly3DCollection
Examples:
(Source code, png, pdf)
(Source code, png, pdf)
New in version 1.2.0: This plotting function was added for the v1.2.0 release.
Axes3D.
contour
(X, Y, Z, *args, **kwargs)[source]¶Create a 3D contour plot.
Argument  Description 

X, Y,  Data values as numpy.arrays 
Z  
extend3d  Whether to extend contour in 3D (default: False) 
stride  Stride (step size) for extending contour 
zdir  The direction to use: x, y or z (default) 
offset  If specified plot a projection of the contour lines on this position in plane normal to zdir 
The positional and other keyword arguments are passed on to
contour()
Returns a contour
Axes3D.
contourf
(X, Y, Z, *args, **kwargs)[source]¶Create a 3D contourf plot.
Argument  Description 

X, Y,  Data values as numpy.arrays 
Z  
zdir  The direction to use: x, y or z (default) 
offset  If specified plot a projection of the filled contour on this position in plane normal to zdir 
The positional and keyword arguments are passed on to
contourf()
Returns a contourf
Changed in version 1.1.0: The zdir and offset kwargs were added.
New in version 1.1.0: The feature demoed in the second contourf3d example was enabled as a result of a bugfix for version 1.1.0.
Axes3D.
bar
(left, height, zs=0, zdir='z', *args, **kwargs)[source]¶Add 2D bar(s).
Argument  Description 

left  The x coordinates of the left sides of the bars. 
height  The height of the bars. 
zs  Z coordinate of bars, if one value is specified they will all be placed at the same z. 
zdir  Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. 
Keyword arguments are passed onto bar()
.
Returns a Patch3DCollection
Axes3D.
quiver
(*args, **kwargs)[source]¶Plot a 3D field of arrows.
call signatures:
quiver(X, Y, Z, U, V, W, **kwargs)
Arguments:
 X, Y, Z:
 The x, y and z coordinates of the arrow locations (default is tail of arrow; see pivot kwarg)
 U, V, W:
 The x, y and z components of the arrow vectors
The arguments could be arraylike or scalars, so long as they they can be broadcast together. The arguments can also be masked arrays. If an element in any of argument is masked, then that corresponding quiver element will not be plotted.
Keyword arguments:
 length: [1.0  float]
 The length of each quiver, default to 1.0, the unit is the same with the axes
 arrow_length_ratio: [0.3  float]
 The ratio of the arrow head with respect to the quiver, default to 0.3
 pivot: [ ‘tail’  ‘middle’  ‘tip’ ]
 The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name pivot. Default is ‘tail’
 normalize: bool
 When True, all of the arrows will be the same length. This defaults to False, where the arrows will be different lengths depending on the values of u,v,w.
Any additional keyword arguments are delegated to
LineCollection
Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have both 2D and 3D plots in the same figure.
New in version 1.0.0: Subplotting 3D plots was added in v1.0.0. Earlier version can not do this.
Keywords: matplotlib code example, codex, python plot, pyplot Gallery generated by SphinxGallery