Parameters: |
- x, y: array_like, shape (n, )
Input values
- bins: [None | int | [int, int] | array_like | [array, array]]
The bin specification:
- If int, the number of bins for the two dimensions
(nx=ny=bins).
- If [int, int], the number of bins in each dimension
(nx, ny = bins).
- If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
- If [array, array], the bin edges in each dimension
(x_edges, y_edges = bins).
The default value is 10.
- range : array_like shape(2, 2), optional, default: None
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): [[xmin,
xmax], [ymin, ymax]]. All values outside of this range will be
considered outliers and not tallied in the histogram.
- normed : boolean, optional, default: False
Normalize histogram.
- weights : array_like, shape (n, ), optional, default: None
An array of values w_i weighing each sample (x_i, y_i).
- cmin : scalar, optional, default: None
All bins that has count less than cmin will not be displayed and
these count values in the return value count histogram will also
be set to nan upon return
- cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set
to none before passing to imshow) and these count values in the
return value count histogram will also be set to nan upon return
|
Other Parameters: |
- cmap : {Colormap, string}, optional
A matplotlib.colors.Colormap instance. If not set, use rc
settings.
- norm : Normalize, optional
A matplotlib.colors.Normalize instance is used to
scale luminance data to [0, 1] . If not set, defaults to
Normalize() .
- vmin/vmax : {None, scalar}, optional
Arguments passed to the Normalize instance.
- alpha :
0 <= scalar <= 1 or None , optional
The alpha blending value.
|