You are reading an old version of the documentation (v2.2.0). For the latest version see https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.html
Version 2.2.0
matplotlib
Fork me on GitHub

Related Topics

This Page

Interpolations for imshow/matshow

This example displays the difference between interpolation methods for imshow and matshow.

If interpolation is None, it defaults to the rc image.interpolation parameter. If the interpolation is none, then no interpolation is performed for the Agg, ps and pdf backends. Other backends will default to ‘nearest’.

For the Agg, ps and pdf backends, interpolation = ‘none’ works well when a big image is scaled down, while interpolation = ‘nearest’ works well when a small image is scaled up.

../../_images/sphx_glr_interpolation_methods_001.png
import matplotlib.pyplot as plt
import numpy as np

methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
           'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
           'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']

# Fixing random state for reproducibility
np.random.seed(19680801)

grid = np.random.rand(4, 4)

fig, axes = plt.subplots(3, 6, figsize=(12, 6),
                         subplot_kw={'xticks': [], 'yticks': []})

fig.subplots_adjust(hspace=0.3, wspace=0.05)

for ax, interp_method in zip(axes.flat, methods):
    ax.imshow(grid, interpolation=interp_method, cmap='viridis')
    ax.set_title(interp_method)

plt.show()

Gallery generated by Sphinx-Gallery