You are reading an old version of the documentation (v2.1.2). For the latest version see https://matplotlib.org/stable/gallery/mplot3d/hist3d.html
Version 2.1.2
matplotlib
Fork me on GitHub


Travis-CI:

Related Topics

This Page

Create 3D histogram of 2D dataΒΆ

Demo of a histogram for 2 dimensional data as a bar graph in 3D.

../../_images/sphx_glr_hist3d_001.png
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x, y = np.random.rand(2, 100) * 4
hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])

# Construct arrays for the anchor positions of the 16 bars.
# Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
# ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
# with indexing='ij'.
xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
xpos = xpos.flatten('F')
ypos = ypos.flatten('F')
zpos = np.zeros_like(xpos)

# Construct arrays with the dimensions for the 16 bars.
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = hist.flatten()

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')

plt.show()

Total running time of the script: ( 0 minutes 0.092 seconds)

Gallery generated by Sphinx-Gallery