You are reading an old version of the documentation (v2.1.2). For the latest version see
Version 2.1.2
Fork me on GitHub


Related Topics

This Page

Affine transform of an imageΒΆ

For the backends that support draw_image with optional affine transform (e.g., agg, ps backend), the image of the output should have its boundary match the dashed yellow rectangle.

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms

def get_image():
    delta = 0.25
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    Z = Z2 - Z1  # difference of Gaussians
    return Z

def do_plot(ax, Z, transform):
    im = ax.imshow(Z, interpolation='none',
                   extent=[-2, 4, -3, 2], clip_on=True)

    trans_data = transform + ax.transData

    # display intended extent of the image
    x1, x2, y1, y2 = im.get_extent()
    ax.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], "y--",
    ax.set_xlim(-5, 5)
    ax.set_ylim(-4, 4)

# prepare image and figure
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
Z = get_image()

# image rotation
do_plot(ax1, Z, mtransforms.Affine2D().rotate_deg(30))

# image skew
do_plot(ax2, Z, mtransforms.Affine2D().skew_deg(30, 15))

# scale and reflection
do_plot(ax3, Z, mtransforms.Affine2D().scale(-1, .5))

# everything and a translation
do_plot(ax4, Z, mtransforms.Affine2D().
        rotate_deg(30).skew_deg(30, 15).scale(-1, .5).translate(.5, -1))

Total running time of the script: ( 0 minutes 0.127 seconds)

Gallery generated by Sphinx-Gallery