matplotlib.patches.
Arc
(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs)¶An elliptical arc. Because it performs various optimizations, it can not be filled.
The arc must be used in an Axes
instance—it can not be added directly to a
Figure
—because it is optimized to
only render the segments that are inside the axes bounding box
with high resolution.
The following args are supported:
If theta1 and theta2 are not provided, the arc will form a complete ellipse.
Valid kwargs are:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or aa[True | False] or None for default capstyle
[‘butt’ | ‘round’ | ‘projecting’] clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
matplotlib color spec contains
a callable function edgecolor
or ecmpl color spec, None, ‘none’, or ‘auto’ facecolor
or fcmpl color spec, or None for default, or ‘none’ for no color figure
a matplotlib.figure.Figure
instancefill
[True | False] gid
an id string hatch
[‘/’ | ‘' | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’] joinstyle
[‘miter’ | ‘round’ | ‘bevel’] label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|' '
|''
]linewidth
or lwfloat or None for default path_effects
unknown picker
[None|float|boolean|callable] rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string visible
[True | False] zorder
any number
draw
(renderer)¶Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The error of this approximation is 1.89818e-6, according to this unverified source:
Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines.
There is a use case where very large ellipses must be drawn with very high accuracy, and it is too expensive to render the entire ellipse with enough segments (either splines or line segments). Therefore, in the case where either radius of the ellipse is large enough that the error of the spline approximation will be visible (greater than one pixel offset from the ideal), a different technique is used.
In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed number of spline segments (8). The algorithm proceeds as follows:
The points where the ellipse intersects the axes bounding box are located. (This is done be performing an inverse transformation on the axes bbox such that it is relative to the unit circle – this makes the intersection calculation much easier than doing rotated ellipse intersection directly).
This uses the “line intersecting a circle” algorithm from:
Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs. London: Springer-Verlag, 2005.
The angles of each of the intersection points are calculated.
Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-segments between the pairs of vertices are drawn using the bezier arc approximation technique implemented in
matplotlib.path.Path.arc()
.
matplotlib.patches.Arc
¶