.. _sphx_glr_gallery_mplot3d_surface3d_radial.py: ================================= 3D surface with polar coordinates ================================= Demonstrates plotting a surface defined in polar coordinates. Uses the reversed version of the YlGnBu color map. Also demonstrates writing axis labels with latex math mode. Example contributed by Armin Moser. .. image:: /gallery/mplot3d/images/sphx_glr_surface3d_radial_001.png :align: center .. code-block:: python from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Create the mesh in polar coordinates and compute corresponding Z. r = np.linspace(0, 1.25, 50) p = np.linspace(0, 2*np.pi, 50) R, P = np.meshgrid(r, p) Z = ((R**2 - 1)**2) # Express the mesh in the cartesian system. X, Y = R*np.cos(P), R*np.sin(P) # Plot the surface. ax.plot_surface(X, Y, Z, cmap=plt.cm.YlGnBu_r) # Tweak the limits and add latex math labels. ax.set_zlim(0, 1) ax.set_xlabel(r'$\phi_\mathrm{real}$') ax.set_ylabel(r'$\phi_\mathrm{im}$') ax.set_zlabel(r'$V(\phi)$') plt.show() **Total running time of the script:** ( 0 minutes 0.113 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:Download Python source code: surface3d_radial.py  .. container:: sphx-glr-download :download:Download Jupyter notebook: surface3d_radial.ipynb  .. only:: html .. rst-class:: sphx-glr-signature Gallery generated by Sphinx-Gallery _