You are reading an old version of the documentation (v2.0.2). For the latest version see https://matplotlib.org/stable/
matplotlib

Travis-CI:

This Page

pylab_examples example code: contour_demo.pyΒΆ

(Source code)

../../_images/contour_demo_001.png

(png, pdf)

../../_images/contour_demo_011.png

(png, pdf)

../../_images/contour_demo_021.png

(png, pdf)

../../_images/contour_demo_031.png

(png, pdf)

../../_images/contour_demo_041.png

(png, pdf)

../../_images/contour_demo_051.png

(png, pdf)

"""
Illustrate simple contour plotting, contours on an image with
a colorbar for the contours, and labelled contours.

See also contour_image.py.
"""
import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'

delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)


# Create a simple contour plot with labels using default colors.  The
# inline argument to clabel will control whether the labels are draw
# over the line segments of the contour, removing the lines beneath
# the label
plt.figure()
CS = plt.contour(X, Y, Z)
plt.clabel(CS, inline=1, fontsize=10)
plt.title('Simplest default with labels')


# contour labels can be placed manually by providing list of positions
# (in data coordinate). See ginput_manual_clabel.py for interactive
# placement.
plt.figure()
CS = plt.contour(X, Y, Z)
manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]
plt.clabel(CS, inline=1, fontsize=10, manual=manual_locations)
plt.title('labels at selected locations')


# You can force all the contours to be the same color.
plt.figure()
CS = plt.contour(X, Y, Z, 6,
                 colors='k',  # negative contours will be dashed by default
                 )
plt.clabel(CS, fontsize=9, inline=1)
plt.title('Single color - negative contours dashed')

# You can set negative contours to be solid instead of dashed:
matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
plt.figure()
CS = plt.contour(X, Y, Z, 6,
                 colors='k',  # negative contours will be dashed by default
                 )
plt.clabel(CS, fontsize=9, inline=1)
plt.title('Single color - negative contours solid')


# And you can manually specify the colors of the contour
plt.figure()
CS = plt.contour(X, Y, Z, 6,
                 linewidths=np.arange(.5, 4, .5),
                 colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5')
                 )
plt.clabel(CS, fontsize=9, inline=1)
plt.title('Crazy lines')


# Or you can use a colormap to specify the colors; the default
# colormap will be used for the contour lines
plt.figure()
im = plt.imshow(Z, interpolation='bilinear', origin='lower',
                cmap=cm.gray, extent=(-3, 3, -2, 2))
levels = np.arange(-1.2, 1.6, 0.2)
CS = plt.contour(Z, levels,
                 origin='lower',
                 linewidths=2,
                 extent=(-3, 3, -2, 2))

# Thicken the zero contour.
zc = CS.collections[6]
plt.setp(zc, linewidth=4)

plt.clabel(CS, levels[1::2],  # label every second level
           inline=1,
           fmt='%1.1f',
           fontsize=14)

# make a colorbar for the contour lines
CB = plt.colorbar(CS, shrink=0.8, extend='both')

plt.title('Lines with colorbar')
#plt.hot()  # Now change the colormap for the contour lines and colorbar
plt.flag()

# We can still add a colorbar for the image, too.
CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)

# This makes the original colorbar look a bit out of place,
# so let's improve its position.

l, b, w, h = plt.gca().get_position().bounds
ll, bb, ww, hh = CB.ax.get_position().bounds
CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])


plt.show()

Keywords: python, matplotlib, pylab, example, codex (see Search examples)