You are reading an old version of the documentation (v1.5.0). For the latest version see

We're updating the default styles for Matplotlib 2.0

Learn what to expect in the new updates


Previous topic

pylab_examples example code:

Next topic

pylab_examples example code:

This Page

pylab_examples example code: boxplot_demo2.pyΒΆ

(Source code, png, hires.png, pdf)

Thanks Josh Hemann for the example

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon

# Generate some data from five different probability distributions,
# each with different characteristics. We want to play with how an IID
# bootstrap resample of the data preserves the distributional
# properties of the original sample, and a boxplot is one visual tool
# to make this assessment
numDists = 5
randomDists = ['Normal(1,1)', ' Lognormal(1,1)', 'Exp(1)', 'Gumbel(6,4)',
N = 500
norm = np.random.normal(1, 1, N)
logn = np.random.lognormal(1, 1, N)
expo = np.random.exponential(1, N)
gumb = np.random.gumbel(6, 4, N)
tria = np.random.triangular(2, 9, 11, N)

# Generate some random indices that we'll use to resample the original data
# arrays. For code brevity, just use the same random indices for each array
bootstrapIndices = np.random.random_integers(0, N - 1, N)
normBoot = norm[bootstrapIndices]
expoBoot = expo[bootstrapIndices]
gumbBoot = gumb[bootstrapIndices]
lognBoot = logn[bootstrapIndices]
triaBoot = tria[bootstrapIndices]

data = [norm, normBoot, logn, lognBoot, expo, expoBoot, gumb, gumbBoot,
        tria, triaBoot]

fig, ax1 = plt.subplots(figsize=(10, 6))
fig.canvas.set_window_title('A Boxplot Example')
plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25)

bp = plt.boxplot(data, notch=0, sym='+', vert=1, whis=1.5)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')

# Add a horizontal grid to the plot, but make it very light in color
# so we can use it for reading data values but not be distracting
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',

# Hide these grid behind plot objects
ax1.set_title('Comparison of IID Bootstrap Resampling Across Five Distributions')

# Now fill the boxes with desired colors
boxColors = ['darkkhaki', 'royalblue']
numBoxes = numDists*2
medians = list(range(numBoxes))
for i in range(numBoxes):
    box = bp['boxes'][i]
    boxX = []
    boxY = []
    for j in range(5):
    boxCoords = list(zip(boxX, boxY))
    # Alternate between Dark Khaki and Royal Blue
    k = i % 2
    boxPolygon = Polygon(boxCoords, facecolor=boxColors[k])
    # Now draw the median lines back over what we just filled in
    med = bp['medians'][i]
    medianX = []
    medianY = []
    for j in range(2):
        plt.plot(medianX, medianY, 'k')
        medians[i] = medianY[0]
    # Finally, overplot the sample averages, with horizontal alignment
    # in the center of each box
    plt.plot([np.average(med.get_xdata())], [np.average(data[i])],
             color='w', marker='*', markeredgecolor='k')

# Set the axes ranges and axes labels
ax1.set_xlim(0.5, numBoxes + 0.5)
top = 40
bottom = -5
ax1.set_ylim(bottom, top)
xtickNames = plt.setp(ax1, xticklabels=np.repeat(randomDists, 2))
plt.setp(xtickNames, rotation=45, fontsize=8)

# Due to the Y-axis scale being different across samples, it can be
# hard to compare differences in medians across the samples. Add upper
# X-axis tick labels with the sample medians to aid in comparison
# (just use two decimal places of precision)
pos = np.arange(numBoxes) + 1
upperLabels = [str(np.round(s, 2)) for s in medians]
weights = ['bold', 'semibold']
for tick, label in zip(range(numBoxes), ax1.get_xticklabels()):
    k = tick % 2
    ax1.text(pos[tick], top - (top*0.05), upperLabels[tick],
             horizontalalignment='center', size='x-small', weight=weights[k],

# Finally, add a basic legend
plt.figtext(0.80, 0.08, str(N) + ' Random Numbers',
            backgroundcolor=boxColors[0], color='black', weight='roman',
plt.figtext(0.80, 0.045, 'IID Bootstrap Resample',
            color='white', weight='roman', size='x-small')
plt.figtext(0.80, 0.015, '*', color='white', backgroundcolor='silver',
            weight='roman', size='medium')
plt.figtext(0.815, 0.013, ' Average Value', color='black', weight='roman',

Keywords: python, matplotlib, pylab, example, codex (see Search examples)