You are reading an old version of the documentation (v1.4.3). For the latest version see https://matplotlib.org/stable/

We're updating the default styles for Matplotlib 2.0

Learn what to expect in the new updates

matplotlib

Previous topic

axes_grid example code: demo_edge_colorbar.py

Next topic

axes_grid example code: demo_floating_axis.py

This Page

axes_grid example code: demo_floating_axes.pyΒΆ

(Source code, png, hires.png, pdf)

../../_images/demo_floating_axes.png
from matplotlib.transforms import Affine2D

import mpl_toolkits.axisartist.floating_axes as floating_axes

import numpy as np
import  mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from mpl_toolkits.axisartist.grid_finder import FixedLocator, MaxNLocator, \
     DictFormatter

def setup_axes1(fig, rect):
    """
    A simple one.
    """
    tr = Affine2D().scale(2, 1).rotate_deg(30)

    grid_helper = floating_axes.GridHelperCurveLinear(tr, extremes=(0, 4, 0, 4))

    ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    aux_ax = ax1.get_aux_axes(tr)

    grid_helper.grid_finder.grid_locator1._nbins = 4
    grid_helper.grid_finder.grid_locator2._nbins = 4

    return ax1, aux_ax


def setup_axes2(fig, rect):
    """
    With custom locator and formatter.
    Note that the extreme values are swapped.
    """

    #tr_scale = Affine2D().scale(np.pi/180., 1.)

    tr = PolarAxes.PolarTransform()

    pi = np.pi
    angle_ticks = [(0, r"$0$"),
                   (.25*pi, r"$\frac{1}{4}\pi$"),
                   (.5*pi, r"$\frac{1}{2}\pi$")]
    grid_locator1 = FixedLocator([v for v, s in angle_ticks])
    tick_formatter1 = DictFormatter(dict(angle_ticks))

    grid_locator2 = MaxNLocator(2)

    grid_helper = floating_axes.GridHelperCurveLinear(tr,
                                        extremes=(.5*pi, 0, 2, 1),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None,
                                        )

    ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    # create a parasite axes whose transData in RA, cz
    aux_ax = ax1.get_aux_axes(tr)

    aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
    ax1.patch.zorder=0.9 # but this has a side effect that the patch is
                        # drawn twice, and possibly over some other
                        # artists. So, we decrease the zorder a bit to
                        # prevent this.

    return ax1, aux_ax


def setup_axes3(fig, rect):
    """
    Sometimes, things like axis_direction need to be adjusted.
    """

    # rotate a bit for better orientation
    tr_rotate = Affine2D().translate(-95, 0)

    # scale degree to radians
    tr_scale = Affine2D().scale(np.pi/180., 1.)

    tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()

    grid_locator1 = angle_helper.LocatorHMS(4)
    tick_formatter1 = angle_helper.FormatterHMS()

    grid_locator2 = MaxNLocator(3)

    ra0, ra1 = 8.*15, 14.*15
    cz0, cz1 = 0, 14000
    grid_helper = floating_axes.GridHelperCurveLinear(tr,
                                        extremes=(ra0, ra1, cz0, cz1),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None,
                                        )

    ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    # adjust axis
    ax1.axis["left"].set_axis_direction("bottom")
    ax1.axis["right"].set_axis_direction("top")

    ax1.axis["bottom"].set_visible(False)
    ax1.axis["top"].set_axis_direction("bottom")
    ax1.axis["top"].toggle(ticklabels=True, label=True)
    ax1.axis["top"].major_ticklabels.set_axis_direction("top")
    ax1.axis["top"].label.set_axis_direction("top")

    ax1.axis["left"].label.set_text(r"cz [km$^{-1}$]")
    ax1.axis["top"].label.set_text(r"$\alpha_{1950}$")


    # create a parasite axes whose transData in RA, cz
    aux_ax = ax1.get_aux_axes(tr)

    aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
    ax1.patch.zorder=0.9 # but this has a side effect that the patch is
                        # drawn twice, and possibly over some other
                        # artists. So, we decrease the zorder a bit to
                        # prevent this.

    return ax1, aux_ax



if 1:
    import matplotlib.pyplot as plt
    fig = plt.figure(1, figsize=(8, 4))
    fig.subplots_adjust(wspace=0.3, left=0.05, right=0.95)

    ax1, aux_ax2 = setup_axes1(fig, 131)
    aux_ax2.bar([0, 1, 2, 3], [3, 2, 1, 3])

    #theta = np.random.rand(10) #*.5*np.pi
    #radius = np.random.rand(10) #+1.
    #aux_ax1.scatter(theta, radius)


    ax2, aux_ax2 = setup_axes2(fig, 132)

    theta = np.random.rand(10)*.5*np.pi
    radius = np.random.rand(10)+1.
    aux_ax2.scatter(theta, radius)


    ax3, aux_ax3 = setup_axes3(fig, 133)

    theta = (8 + np.random.rand(10)*(14-8))*15. # in degrees
    radius = np.random.rand(10)*14000.
    aux_ax3.scatter(theta, radius)

    plt.show()

Keywords: python, matplotlib, pylab, example, codex (see Search examples)